Biochemical evidence for somatostatin receptors in murine neuroblastoma clone N1E-115

Print
Published on Thursday, 01 June 2017

Abstract

Radioligand binding and functional assays were employed to demonstrate the existence of somatostatin receptors in the murine neuroblastoma clone N1E-115.

Saturation experiments with [125I][Tyr11]somatostatin-14 indicated the presence of a single class of binding sites in membranes prepared from N1E-115 cells (Kd = 83 pM; Bmax = 21,000 receptors/cell).

Somatostatin-14, somatostatin-28 and L363586 (cyclo(N-Me-ALA-TYR-D-TRP-LYS-VAL-PHE] all displaced the 125I-ligand monophasically in N1E-115 cells (Ki values were 28, 82 and 34 pM, respectively), which contrasted with the binding heterogeneity apparent with L363586 in rat brain membranes.

The binding of [125I][Tyr11]somatostatin-14 was reduced by GppNHp, indicating that N1E-115 somatostatin receptors interacted with guanine nucleotide binding protein(s).

Somatostatin agonists decreased by 30-50% the levels of [3H]cyclic AMP induced in intact cells by forskolin, prostaglandin E1, or vasoactive intestinal polypeptide.

The EC50 values for inhibition of the [3H]cyclic AMP response to PGE1 by L363586, somatostatin-14, and somatostatin-28 were 0.24, 0.63 and 1.0 nM, respectively. Pertussis toxin treatment of N1E-115 cells reduced both binding to the receptor and the functional response to somatostatin-14.

These data suggest that a single class of somatostatin receptors in N1E-115 cells are linked to the inhibition of adenylate cyclase through a Gi protein.

 



Download the complete article

About this publication.

See also:

- Official Web Site: The Di Bella Method;

- The Di Bella Method (A Fixed Part - Somatostatin, Octreotide, Sandostatin LAR, analogues and/or derivatives);

- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;

- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);

- Publication, 2018 Sep: The over-expression of GH/GHR in tumour tissues with respect to healthy ones confirms its oncogenic role and the consequent oncosuppressor role of its physiological inhibitor, somatostatin: a review of the literature (from Di Bella's Foundation);

- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);

- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);

- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);

- The Di Bella Method (A Fixed Part - Cyclophosphamide 50mg tablets and/or Hydroxyurea 500mg tablets, one or two per day);

- The Di Bella Method (A Fixed Part - Calcium, 2 grams per day, orally);

- Neuroblastoma: Complete objective response to biological treatment;

- Oesophageal squamocellular carcinoma: a complete and objective response;

- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;

- The Di Bella Method Increases by the 30% the survival rate for Pancreas tumors and for this reason should be proposed as first line therapy for this type of cancer;

- Recurrent Glioblastoma Multiforme (grade IV – WHO 2007): a case of complete objective response achieved by means of the concomitant administration of Somatostatin and Octreotide – Retinoids – Vitamin E – Vitamin D3 – Vitamin C – Melatonin – D2 R agonists (Di Bella Method – DBM) associated with Temozolomide;

- The Di Bella Method DBM improved survival objective response and performance status in a retrospective observational clinical study on 23 tumours of the head and neck.