Abstract
Various hormones and growth factors have been implicated in progression of prostate cancer, but their role and the underlying molecular mechanism(s) involved remain poorly understood.
In this study, we investigated the role of human growth hormone (GH) and its receptor (GHR) in human prostate cancer.
We first demonstrated mRNA expression of GHR and of its exon 9-truncated isoform (GHR(tr)) in benign prostate hyperplasia (BPH) and prostate adenocarcinoma patient tissues, as well as in LNCaP, PC3 and DU145 human prostate cancer cell lines.
GHR mRNA levels were 80% higher and GHR(tr) only 25% higher, in the carcinoma tissues than in BPH.
Both isoforms were also expressed in LNCaP and PC3 cell lines and somewhat less so in DU145 cells. The LNCaP cell GHR protein was further characterized, on the basis of its M(r) of 120kDa, its binding to two different GHR monoclonal antibodies, its high affinity and purely somatogenic binding to (125)I-hGH and its ability to secrete GH binding protein, all characteristic of a functional GHR.
Furthermore, GH induced rapid, time- and dose-dependent signaling events in LNCaP cells, including phosphorylation of JAK2 tyrosine kinase, of GHR itself and of STAT5A (JAK2-STAT5A pathway), of p42/p44 MAPK and of Akt/PKB. No effect of GH (72h) could be shown on basal or androgen-induced LNCaP cell proliferation nor on PSA secretion. Interestingly, however, GH caused a rapid (2-12h) though transient striking increase in immunoreactive androgen receptor (AR) levels (< or =5-fold), followed by a slower (24-48h) reduction (< or = 80%), with only modest parallel changes in serine-phosphorylated AR.
In conclusion, the GH-induced activation of signaling pathways, its effects on AR protein in LNCaP cells and the isoform-specific regulation of GHR in prostate cancer patient tissues, suggest that GH, most likely in concert with other hormones and growth factors, may play an important role in progression of human prostate cancer.
See also:
- Official Web Site: The Di Bella Method;
- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);
- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;
- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);
- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes (from Di Bella's Foundation);
- Publication, 2020 Sep: Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives (from Di Bella's Foundation);
- Complete objective response to biological therapy of plurifocal breast carcinoma;