Melatonin cytotoxicity in human leukemia cells: relation with its pro-oxidant effect
Abstract
Melatonin has a variety of functions in human physiology and is involved in a number of pathological events including neoplastic processes.
The tissue protective actions of melatonin are attributed to its antioxidant activity though, under certain conditions, melatonin might also exert oxidant effects, particularly in cancer cells.
This study evaluated the effects of 10(-5) and 10(-3) m concentrations of melatonin on human leukemia cells.
Moderate cytotoxic effects of melatonin at 10(-3) m concentrations were observed in CMK, Jurkat and MOLT-4 cells which was associated with significant reactive oxygen species (ROS) generation. Melatonin treatment was not associated with significant cytotoxicity in HL-60 cells, although the generation of ROS was significantly increased. K562 and Daudi cells did not appear to be effected by melatonin treatment.
Cellular membrane lipid peroxidation was not influenced by melatonin with the exception of CMK cells. Cell cycle kinetics were not affected in melatonin-treated samples, again with the exception of CMK cells which showed increased apoptosis.
Melatonin, therefore, induces the production of ROS that may be associated with cytotoxicity depending on the concentration of melatonin in some leukemia cells and does not appear to stimulate leukemia cell growth. These pro-oxidant actions of melatonin may assist in limiting leukemic cell growth.
The Di Bella's Method: Use of Melatonin (together with others chemical compounds) in Chronic Lymphocytic Leukemia:
See also:
- Official Web Site: The Di Bella Method;
- Melatonin use in cancer patients have started in 1974, when melatonin prepared according to Prof. Di Bella’s formulation [...]. For 11 days was administered to the patient, admitted to the general medical ward at the Maggiore-Pizzardi Hospital in Bologna, very slowly (over approx. 8 hours) and intravenously administered 1000 mg of melatonin for 11 days. During the course of each day, the patient was intravenously administered 4 saline drips of 500 ml, each containing ten 25 mg bottles of freeze-dried melatonin, lasting 2 hours, totaling 1000 mg per day. No other drug of any kind was administered in order to ascertain the effect of the MLT without interference [...]. From Melatonin with adenosine solubilized in water and stabilized with glycine for oncological treatment - technical preparation, effectivity and clinical findings;
- About Melatonin - In vitro, review and in vivo publications;
- Publication: Melatonin anticancer effects: Review (from Di Bella's Foundation);
- Publication: Key aspects of melatonin physiology: 30 years of research (from Di Bella's Foundation);
- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);
- Prolactin inhibitors in oncology - In vitro, review and in vivo publications;
- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;
- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);
- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes (from Di Bella's Foundation);
- Publication, 2020 Sep: Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives (from Di Bella's Foundation);
The Di Bella's Method: Use of Melatonin since 1974 - together with others chemical compounds - in several Oncological Pathologies:
- Pleural Mesothelioma: clinical records on 11 patients treated with Di Bella's Method;
- Malignant pleural mesothelioma, stage T3-T4. Consideration of a case study;
- Neuroblastoma: Complete objective response to biological treatment;
- Large B-cells Non-Hodgkin's Lymphoma, Stage IV-AE: a Case Report;
- Non-Hodgkin's Lymphoma, Stage III-B-E: a Case Report;
- Oesophageal squamocellular carcinoma: a complete and objective response;
- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;
- Complete objective response to biological therapy of plurifocal breast carcinoma;






