Pathways mediating the growth-inhibitory actions of vitamin D in prostate cancer
Abstract
Vitamin D is emerging as an important dietary factor that affects the incidence and progression of many malignancies including prostate cancer.
The active form of vitamin D, 1,25-dihydroxycholecalciferol [1,25(OH)(2)D(3)], inhibits the growth and stimulates the differentiation of prostate cancer cells.
We have studied primary cultures of normal and cancer-derived prostatic epithelial cells as well as established human prostate cancer cell lines to elucidate the molecular pathways of 1,25(OH)(2)D(3) actions. These pathways are varied and appear to be cell specific. In LNCaP cells, 1,25(OH)(2)D(3) mainly causes growth arrest through the induction of insulin-like growth factor binding protein-3 and also stimulates apoptosis to a much smaller extent.
We have used cDNA-microarray analyses to identify additional genes that are regulated by 1,25(OH)(2)D(3) and to raise novel therapeutic targets for use in the chemoprevention or treatment of prostate cancer. Less calcemic analogs of 1,25(OH)(2)D(3) that have more antiproliferative activity are being developed that will be more useful clinically. In target cells, 1,25(OH)(2)D(3) induces 24-hydroxylase, the enzyme that catalyzes its self inactivation. Cotreatment with 24-hydroxylase inhibitors enhances the antiproliferative activity of 1,25(OH)(2)D(3).
The combination of other anticancer agents such as retinoids with vitamin D offers another promising therapeutic approach. A small clinical trial has shown that 1,25(OH)(2)D(3) can slow the rate of prostate-specific antigen increase in prostate cancer patients, which demonstrates proof of the concept that vitamin D or its analogs are clinically effective.
Our research is directed at understanding the mechanisms of vitamin D action in prostate cells with the goal of developing chemoprevention and treatment strategies to improve prostate cancer therapy.
See also:
- Official Web Site: The Di Bella Method;
- The Di Bella Method (A Fixed Part - Dihydrotachysterol, Alfacalcidol, synthetic Vitamin D3);
- Vitamin D (analogues and/or derivatives) and cancer - In vitro, review and in vivo publications;
- Solution of retinoids in vitamin E in the Di Bella Method biological multitherapy;
- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;
- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);
- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes (from Di Bella's Foundation);
- Publication, 2020 Sep: Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives (from Di Bella's Foundation);
- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);
- Prolactin inhibitors in oncology - In vitro, review and in vivo publications;
- Complete objective response to biological therapy of plurifocal breast carcinoma;
- Neuroblastoma: Complete objective response to biological treatment;
- Large B-cells Non-Hodgkin's Lymphoma, Stage IV-AE: a Case Report;
- Non-Hodgkin's Lymphoma, Stage III-B-E: a Case Report;
- Oesophageal squamocellular carcinoma: a complete and objective response;
- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;