Extrapineal melatonin in pathology: new perspectives for diagnosis, prognosis and treatment of illness
Abstract
During the last decade, attention was concentrated on melatonin -- one of the hormones of the diffuse neuroendocrine system, which has been considered only as a hormone of the pineal gland, for many years.
Currently, melatonin has been identified not only in the pineal gland, but also in extrapineal tissues -- retina, harderian gland, gut mucosa, cerebellum, airway epithelium, liver, kidney, adrenals, thymus, thyroid, pancreas, ovary, carotid body, placenta and endometrium as well as in non-neuroendocrine cells like mast cells, natural killer cells, eosinophilic leukocytes, platelets and endothelial cells.
The above list of the cells storing melatonin indicates that melatonin has a unique position among the hormones of the diffuse neuroendocrine system, which is present in practically all organ systems.
Functionally, melatonin-producing cells are certain to be part and parcel of the diffuse neuroendocrine system as a universal system of response, control and organism protection. Taking into account the large number of melatonin-producing cells in many organs, the wide spectrum of biological activities of melatonin and especially its main property as a universal regulator of biological rhythms, it should be possible to consider extrapineal melatonin as a key paracrine signal molecule for the local coordination of intercellular relationships.
Analysis of our long-term clinical investigations shows the direct participation and active role of extrapineal melatonin in the pathogenesis of tumor growth and many other non-tumor pathologies such as gastric ulcer, immune diseases, neurodegenerative processes, radiation disorders, etc.
The modification of antitumor and other specific therapy by the activation or inhibition of extrapineal melatonin activity could be useful for the improvement of the treatment of illness.
See also:
- Official Web Site: The Di Bella Method;
- Melatonin use in cancer patients have started in 1974, when melatonin prepared according to Prof. Di Bella’s formulation [...]. For 11 days was administered to the patient, admitted to the general medical ward at the Maggiore-Pizzardi Hospital in Bologna, very slowly (over approx. 8 hours) and intravenously administered 1000 mg of melatonin for 11 days. During the course of each day, the patient was intravenously administered 4 saline drips of 500 ml, each containing ten 25 mg bottles of freeze-dried melatonin, lasting 2 hours, totaling 1000 mg per day. No other drug of any kind was administered in order to ascertain the effect of the MLT without interference [...]. From Melatonin with adenosine solubilized in water and stabilized with glycine for oncological treatment - technical preparation, effectivity and clinical findings;
- About Melatonin - In vitro, review and in vivo publications;
- Publication: Melatonin anticancer effects: Review (from Di Bella's Foundation);
- Publication: Key aspects of melatonin physiology: 30 years of research (from Di Bella's Foundation);
The Di Bella's Method: Use of Melatonin - together with others chemical compounds - in several Oncological Pathologies:
- Complete objective response to biological therapy of plurifocal breast carcinoma;
- Pleural Mesothelioma: clinical records on 11 patients treated with Di Bella's Method;
- Malignant pleural mesothelioma, stage T3-T4. Consideration of a case study;
- Neuroblastoma: Complete objective response to biological treatment;
- Large B-cells Non-Hodgkin's Lymphoma, Stage IV-AE: a Case Report;
- Non-Hodgkin's Lymphoma, Stage III-B-E: a Case Report;
- Oesophageal squamocellular carcinoma: a complete and objective response;
- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;