Somatostatin signaling via SSTR1 contributes to the quiescence of colon cancer stem cells

Print
Published on Friday, 09 December 2016

Abstract

BACKGROUND: Neuroendocrine cells (NECs) reside adjacent to colonic stem cells (SCs) in the crypt stem cell (SC) niche, but how NECs are involved in regulation of SCs is unclear. We investigated NECs expressing somatostatin (SST) and somatostatin receptor type 1 (SSTR1) because SST inhibits intestinal proliferation.

HYPOTHESIS: SSTR1 cells maintain SCs in a quiescent state, and aberrant SST signaling contributes to SC overpopulation in colorectal cancer (CRC).

METHODS: The proportion of SCs to NECs cells was quantified, by flow cytometry, in CRC cell lines and primary normal/tumor tissues based on cellular ALDH and SSTR1 levels, respectively. Doubling time and sphere-formation was used to evaluate cell proliferation and stemness. CRC cell lines were treated with exogenous SST and SST inhibitor cyclosomatostatin (cycloSST) and analyzed for changes in SCs and growth rate. Paracrine signaling between NECs and SCs was ascertained using transwell cultures of ALDH+ and SSTR1+ cells.

RESULTS: In CRC cell lines, the proportion of ALDH+ cells inversely correlates with proportion of SSTR1+ cells and with rate of proliferation and sphere-formation. While primary normal tissue shows SST and SSTR1 expression, CRC shows only SSTR1 expression. Moreover, ALDH+ cells did not show SST or SSTR1 expression. Exogenous SST suppressed proliferation but not ALDH+ population size or viability. Inhibition of SSTR1 signaling, via cycloSST treatment, decreased cell proliferation, ALDH+ cell population size and sphere-formation. When co-cultured with SSTR1+ cells, sphere-formation and cell proliferation of ALDH+ cells was inhibited.

CONCLUSION: That each CRC cell line has a unique ALDH+/SSTR1+ ratio which correlates with its growth dynamics, suggests feedback mechanisms exist between SCs and NECs that contribute to regulation of SCs. The growth suppression by both SST and cycloSST treatments suggests that SST signaling modulates this feedback mechanism. The ability of SSTR1+ cells to decrease sphere formation and proliferation of ALDH+ cells in transwell cultures indicates that the ALDH subpopulation is regulated by SSTR1 via a paracrine mechanism. Since ALDH+ cells lack SST and SSTR1 expression, we conjecture that SST signaling controls the rate of NEC maturation as SCs mature along the NEC lineage, which contributes to quiescence of SCs and inhibition of proliferation.

 



Download the complete article

About this publication.

 

See also:

- Official Web Site: The Di Bella Method;

- The Di Bella Method (A Fixed Part - Somatostatin, Octreotide, Sandostatin LAR, analogues and/or derivatives);

- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;

- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);

- Publication, 2018 Sep: The over-expression of GH/GHR in tumour tissues with respect to healthy ones confirms its oncogenic role and the consequent oncosuppressor role of its physiological inhibitor, somatostatin: a review of the literature (from Di Bella's Foundation);

- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);

- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);

- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);

- The Di Bella Method (A Fixed Part - Cyclophosphamide 50mg tablets and/or Hydroxyurea 500mg tablets, one or two per day);

- The Di Bella Method (A Fixed Part - Calcium, 2 grams per day, orally);

- The Di Bella Method (A Fixed Part - All-Trans Retinoic Acid, Analogues and/or Derivatives - Approximately 60mg per day orally: 40mg per day Beta-Carotene/β-Carotene, 10mg per day ATRA and 10mg per day Axerophthol palmitate);

- All-Trans-Retinoic Acid (ATRA - analogues and/or derivatives) - In vitro, review and in vivo publications;

- Solution of retinoids in vitamin E in the Di Bella Method biological multitherapy;

- The Di Bella Method (A Fixed Part - Alpha tocopheryl acetate/Vitamin E, approximately 20 grams per day orally);

- Cancer and Vitamin E (analogues and/or derivatives) and cancer - In vitro, review and in vivo publications;

- Oesophageal squamocellular carcinoma: a complete and objective response;

- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;

- The Di Bella Method Increases by the 30% the survival rate for Pancreas tumors and for this reason should be proposed as first line therapy for this type of cancer;

- Recurrent Glioblastoma Multiforme (grade IV – WHO 2007): a case of complete objective response achieved by means of the concomitant administration of Somatostatin and Octreotide – Retinoids – Vitamin E – Vitamin D3 – Vitamin C – Melatonin – D2 R agonists (Di Bella Method – DBM) associated with Temozolomide;

- The Di Bella Method DBM improved survival objective response and performance status in a retrospective observational clinical study on 23 tumours of the head and neck;

- Chronic Lymphocytic Leukemia: Long-Lasting Remission with Combination of Cyclophosphamide, Somatostatin, Bromocriptine, Retinoids, Melatonin, and ACTH;

- Neuroblastoma: Complete objective response to biological treatment.


Somatostatin signaling via SSTR1 contributes to the quiescence of colon cancer stem - Additional Files



Download the complete article