NEDD9 Inhibition by miR-25-5p Activation Is Critically Involved in Co-Treatment of Melatonin- and Pterostilbene-Induced Apoptosis in Colorectal Cancer Cells

Print
Published on Monday, 04 November 2019

Abstract

The underlying interaction between melatonin (MLT) and daily fruit intake still remains unclear to date, despite multibiological effects of MLT. Herein, the apoptotic mechanism by co-treatment of MLT and pterostilbene (Ptero) contained mainly in grape and blueberries was elucidated in colorectal cancers (CRCs).

MLT and Ptero co-treatment (MLT+Ptero) showed synergistic cytotoxicity compared with MLT or Ptero alone, reduced the number of colonies and Ki67 expression, and also increased terminal deoxynucleotidyl transferase dUTP nick end labeling- (TUNEL) positive cells and reactive oxygen species (ROS) production in CRCs.

Consistently, MLT+Ptero cleaved caspase 3 and poly (ADP-ribose) polymerase (PARP), activated sex-determining region Y-Box10 (SOX10), and also attenuated the expression of Bcl-xL, neural precursor cell expressed developmentally downregulated protein 9 (NEDD9), and SOX9 in CRCs.

Additionally, MLT+Ptero induced differentially expressed microRNAs (upregulation: miR-25-5p, miR-542-5p, miR-711, miR-4725-3p, and miR-4484; downregulation: miR-4504, miR-668-3p, miR-3121-5p, miR-195-3p, and miR-5194) in HT29 cells.

Consistently, MLT +Ptero upregulated miR-25-5p at mRNA level and conversely NEDD9 overexpression or miR-25-5p inhibitor reversed the ability of MLT+Ptero to increase cytotoxicity, suppress colony formation, and cleave PARP in CRCs.

Furthermore, immunofluorescence confirmed miR-25-5p inhibitor reversed the reduced fluorescence of NEDD9 and increased SOX10 by MLT+Ptero in HT29 cells.

Taken together, our findings provided evidence that MLT+Ptero enhances apoptosis via miR-25-5p mediated NEDD9 inhibition in colon cancer cells as a potent strategy for colorectal cancer therapy.

 

About this publication.

See also:

- Official Web Site: The Di Bella Method;

- The Di Bella Method (A Fixed Part - Melatonin tablets. From 30-40mg/day up to 200mg/day orally in patients with advanced stage of cancer disease and/or patients without respond to traditional treatments);

- Melatonin with adenosine solubilized in water and stabilized with glycine for oncological treatment - technical preparation, effectivity and clinical findings;

- About Melatonin - In vitro, review and in vivo publications;

- Publication: Melatonin anticancer effects: Review (from Di Bella's Foundation);

- Publication: Key aspects of melatonin physiology: 30 years of research (from Di Bella's Foundation);

- The Di Bella Method (A Fixed Part - Cyclophosphamide 50mg tablets and/or Hydroxyurea 500mg tablets, one or two per day);

- Oesophageal squamocellular carcinoma: a complete and objective response;

- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;

- The Di Bella Method Increases by the 30% the survival rate for Pancreas tumors and for this reason should be proposed as first line therapy for this type of cancer;

- The Di Bella Method (DBM) in the treatment of prostate cancer: a preliminary retrospective study of 16 patients and a review of the literature;

- The Synergism of Somatostatin, Melatonin, Vitamins Prolactin and Estrogen Inhibitors Increased Survival, Objective Response and Performance Status In 297 Cases of Breast Cancer;

- Complete objective response, stable for 5 years, with the Di Bella Method, of multiple-metastatic carcinoma of the breast;

- Evaluation of the safety and efficacy of the first-line treatment with somatostatin combined with melatonin, retinoids, vitamin D3, and low doses of cyclophosphamide in 20 cases of breast cancer: a preliminary report;

- The Di Bella Method (DBM) improved survival, objective response and performance status in a retrospective observational clinical study on 122 cases of breast cancer;

- Complete objective response to biological therapy of plurifocal breast carcinoma;

- Recurrent Glioblastoma Multiforme (grade IV – WHO 2007): a case of complete objective response achieved by means of the concomitant administration of Somatostatin and Octreotide – Retinoids – Vitamin E – Vitamin D3 – Vitamin C – Melatonin – D2 R agonists (Di Bella Method – DBM) associated with Temozolomide;

- The Di Bella Method DBM improved survival objective response and performance status in a retrospective observational clinical study on 23 tumours of the head and neck;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in advanced non-small-cell lung cancer patients with low performance status;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in chemotherapy-pretreated patients with advanced lung adenocarcinoma and low performance status;

- Observations on the Report of a case of pulmonary adenocarcinoma with lymph node, hepatic and osseus metastasis;

- Neuroblastoma: Complete objective response to biological treatment.