MicroRNA and gene expression analysis of melatonin-exposed human breast cancer cell lines indicating involvement of the anticancer effect

Print
Published on Friday, 27 March 2015

Abstract

MicroRNAs (miRNAs) are small, noncoding RNAs that play a crucial role in regulation of gene expression. Recent studies have shown that miRNAs implicated in initiation and progression of various human cancers, including breast cancer and also analysis of miRNA expression profiles in cancer provide new insights into potential mechanisms of carcinogenesis.

Melatonin, N-acetyl-5-methoxytryptamine, is synthesized by the pineal gland in response to the dark/light cycle and has been known to act as a synchronizer of the biological clock.

Melatonin has a variety of therapeutic effects, such as immunomodulatory actions, anti-inflammatory effects, and antioxidant actions. Furthermore, melatonin is reported to have an anticancer function including suppression of the metabolism of tumor cells and induction of tumor suppressor genes in cancer cells, including breast cancer cells.

In this study, we determined whether miRNAs play a role in regulation of various gene expression responses to melatonin in MCF-7 human breast cancer cells.

We examined whole-genome miRNA and mRNA expression and found that 22 miRNAs were differentially expressed in melatonin-treated MCF-7 cells. We further identified a number of mRNAs whose expression level shows a high inverse correlation with miRNA expression.

The Gene Ontology (GO) enrichment analysis and pathways analysis were performed for identification of the signaling pathways and biological processes affected by differential expression of miRNA and miRNA-related genes.

Our findings suggested that melatonin may modulate miRNA and gene expression as an anticancer mechanism in human breast cancer cells.

 

About this publication.

See also:

- About Melatonin;

- The Di Bella Method (A Fixed Part - Melatonin tablets);

- Melatonin with adenosine solubilized in water and stabilized with glycine for oncological treatment - technical preparation, effectivity and clinical findings;

- The Di Bella Method (DBM) in the treatment of prostate cancer: a preliminary retrospective study of 16 patients and a review of the literature;

- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;

- The Di Bella Method Increases by the 30% the survival rate for Pancreas tumors and for this reason should be proposed as first line therapy for this type of cancer;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in advanced non-small-cell lung cancer patients with low performance status;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in chemotherapy-pretreated patients with advanced lung adenocarcinoma and low performance status;

- Observations on the Report of a case of pulmonary adenocarcinoma with lymph node, hepatic and osseus metastasis;

- The Synergism of Somatostatin, Melatonin, Vitamins Prolactin and Estrogen Inhibitors Increased Survival, Objective Response and Performance Status In 297 Cases of Breast Cancer;

- Complete objective response, stable for 5 years, with the Di Bella Method, of multiple-metastatic carcinoma of the breast;

- Evaluation of the safety and efficacy of the first-line treatment with somatostatin combined with melatonin, retinoids, vitamin D3, and low doses of cyclophosphamide in 20 cases of breast cancer: a preliminary report;

- The Di Bella Method (DBM) improved survival, objective response and performance status in a retrospective observational clinical study on 122 cases of breast cancer;

- Complete objective response to biological therapy of plurifocal breast carcinoma.