Somatostatin controls Kaposi's sarcoma tumor growth through inhibition of angiogenesis
Abstract
Somatostatin and its analogs are active in the inhibition of SST receptor-positive endocrine neoplasms, but their activity and mechanism in nonendocrine tumors is not clear.
Somatostatin potently inhibited growth of a Kaposi's sarcoma xenograft in nude mice, yet in vitro the tumor cells did not express any known somatostatin receptors and were not growth inhibited by somatostatin.
Histological examination revealed limited vascularization in the somatostatin-treated tumors as compared with the controls. Somatostatin was a potent inhibitor of angiogenesis in an in vivo assay. In vitro, somatostatin inhibited endothelial cell growth and invasion.
Migration of monocytes, important mediators of the angiogenic cascade, was also inhibited by somatostatin. Both cells types expressed somatostatin receptor mRNAs.
These data demonstrate that somatostatin is a potent antitumor angiogenesis compound directly affecting both endothelial and monocytic cells.
The debated function of somatostatin in tumor treatment and the design of therapeutic protocols should be reexamined considering these data.
See also:
- Official Web Site: The Di Bella Method;
- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;
- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);
- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes (from Di Bella's Foundation);
- Publication, 2020 Sep: Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives (from Di Bella's Foundation);
- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);
- Prolactin inhibitors in oncology - In vitro, review and in vivo publications;
- The Di Bella Method (A Fixed Part - Calcium, 2 grams per day, orally);
- Neuroblastoma: Complete objective response to biological treatment;
- Oesophageal squamocellular carcinoma: a complete and objective response;
- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;