1,25-Dihydroxyvitamin D3 induces differentiation of a retinoic acid-resistant acute promyelocytic leukemia cell line (UF-1) associated with expression of p21(WAF1/CIP1) and p27(KIP1)

Published on Thursday, 06 July 2017


Retinoic acid (RA) resistance is a serious problem for patients with acute promyelocytic leukemia (APL) who are receiving all-trans RA. However, the mechanisms and strategies to overcome RA resistance by APL cells are still unclear.

The biologic effects of RA are mediated by two distinct families of transcriptional factors: RA receptors (RARs) and retinoid X receptors (RXRs). RXRs heterodimerize with 1, 25-dihydroxyvitamin D3 [1,25(OH)2D3] receptor (VDR), enabling their efficient transcriptional activation.

The cyclin-dependent kinase (cdk) inhibitor p21(WAF1/CIP1) has a vitamin D3-responsive element (VDRE) in its promoter, and 1,25(OH)2D3 enhances the expression of p21(WAF1/CIP1) and induces differentiation of selected myeloid leukemic cell lines.

We have recently established a novel APL cell line (UF-1) with features of RA resistance. 1,25(OH)2D3 can induce growth inhibition and G1 arrest of UF-1 cells, resulting in differentiation of these cells toward granulocytes.

This 1, 25(OH)2D3-induced G1 arrest is enhanced by all-trans RA. Also, 1, 25(OH)2D3 (10(-10) to 10(-7) mol/L) in combination with RA markedly inhibits cellular proliferation in a dose- and time-dependent manner.

Associated with these findings, the levels of p21(WAF1/CIP1) and p27(KIP1) mRNA and protein increased in these cells. Northern blot analysis showed that p21(WAF1/CIP1) and p27(KIP1) mRNA and protein increased in these cells. Northern blot analysis showed that p21(WAF1/CIP1) and p27(KIP1) transcripts were induced after 6 hours' exposure to 1,25(OH)2D3 and then decreased to basal levels over 48 hours. Western blot experiments showed that p21(WAF1/CIP1) protein levels increased and became detectable after 12 hours of 1,25(OH)2D3 treatment and induction of p27(KIP1) protein was much more gradual and sustained in UF-1 cells.

Interestingly, the combination of 1, 25(OH)2D3 and RA markedly enhanced the levels of p27(KIP1) transcript and protein as compared with levels induced by 1, 25(OH)2D3 alone. In addition, exogenous p27(KIP1) expression can enhance the level of CD11b antigen in myeloid leukemic cells. In contrast, RA alone can induce G1 arrest of UF-1 cells; however, it did not result in an increase of p21(WAF1/CIP1) and p27(KIP1) transcript and protein expression in RA-resistant cells.

Taken together, we conclude that 1,25(OH)2D3 induces increased expression of cdk inhibitors, which mediates a G1 arrest, and this may be associated with differentiation of RA-resistant UF-1 cells toward mature granulocytes.



About this publication.


See also:

- All-Trans-Retinoic Acid (ATRA - analogues and/or derivatives);

- Vitamin D (analogues and/or derivatives) and cancer;

- Solution of retinoids in vitamin E in the Di Bella Method biological multitherapy;

- Chronic Lymphocytic Leukemia: Long-Lasting Remission with Combination of Cyclophosphamide, Somatostatin, Bromocriptine, Retinoids, Melatonin, and ACTH.