Retinoid-induced suppression of squamous cell differentiation in human oral squamous cell carcinoma xenografts (line 1483) in athymic nude mice

Print
Published on Thursday, 10 October 2019

Abstract

Retinoids are promising agents for therapy of squamous cancers. In vitro, retinoids decrease expression of differentiation markers in head and neck squamous carcinoma cells. Little information is available on effects of retinoids on head and neck squamous carcinoma cell xenograft growth in vivo.

To address this issue, head and neck squamous carcinoma cells (line 1483) were established as xenografts in nude mice. Control tumors grew rapidly with doubling times of 4-6 days to mean volumes of 1696 mm3 after 24 days. Histological analyses indicated the formation of well-differentiated squamous carcinoma cells exhibiting pronounced stratification (basal and suprabasal cells) and keratinization (keratin pearls) with abundant stroma. Cytokeratin 19 expression was restricted to the basal cell layers, and cytokeratin 4 expression was abundant in suprabasal cells.

Mice were treated daily with 30 mg/kg 9-cis retinoic acid, 20 mg/kg all-trans-retinoic acid, or 60 mg/kg 13-cis retinoic acid by p.o. gavage on a schedule of 5 days/week over 4 weeks.

Low micromolar (1.48-3.67 microM) and nanomolar (200-490 nM) concentrations of 9-cis retinoic acid and all-trans-retinoic acid were measured in plasmas and xenografts, respectively, 30 min after dosing.

Retinoid treatment produced a marked suppression of the squamous cell differentiation of tumor cells manifest by decreased keratinization, loss of stratification, and accumulation of basal cells. This was accompanied by large decreases in the number of CK4-positive cells and concomitant increases of CK19-positive cells.

Retinoic acid receptor-beta expression was also increased by 2.9-9.7-fold after chronic retinoid treatment. 9-cis retinoic acid and all-trans-retinoic acid decreased tumor volumes by 23 +/- 5 (SE) and 19 +/- 3%, respectively (P < or = 0.05); 13-cis retinoic acid was inactive. These retinoids did not decrease the rate of exponential tumor growth but increased the latent period until exponential growth began.

These studies demonstrate that retinoids do not universally decrease tumor growth but profoundly suppress squamous cell differentiation in vivo in this xenograft model.

 

About this publication.

See also:

- Official Web Site: The Di Bella Method;

- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);

- The Di Bella Method (A Fixed Part - Cyclophosphamide 50mg tablets and/or Hydroxyurea 500mg tablets, one or two per day);

- The Di Bella Method (A Fixed Part - All-Trans Retinoic Acid, Analogues and/or Derivatives - Approximately 60mg per day orally: 40mg per day Beta-Carotene/β-Carotene, 10mg per day ATRA and 10mg per day Axerophthol palmitate);

- All-Trans-Retinoic Acid (ATRA - analogues and/or derivatives) - In vitro, review and in vivo publications;

- Solution of retinoids in vitamin E in the Di Bella Method biological multitherapy;

- The Di Bella Method (A Fixed Part - Alpha tocopheryl acetate/Vitamin E, approximately 20 grams per day orally);

- Cancer and Vitamin E (analogues and/or derivatives) and cancer - In vitro, review and in vivo publications;

- The Di Bella Method (A Fixed Part - Somatostatin, Octreotide, Sandostatin LAR, analogues and/or derivatives);

- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;

- Publication: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);

- Publication: The over-expression of GH/GHR in tumour tissues with respect to healthy ones confirms its oncogenic role and the consequent oncosuppressor role of its physiological inhibitor, somatostatin: a review of the literature (from Di Bella's Foundation);

- Publication: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);

- The Di Bella Method DBM improved survival objective response and performance status in a retrospective observational clinical study on 23 tumours of the head and neck;

- Recurrent Glioblastoma Multiforme (grade IV – WHO 2007): a case of complete objective response achieved by means of the concomitant administration of Somatostatin and Octreotide – Retinoids – Vitamin E – Vitamin D3 – Vitamin C – Melatonin – D2 R agonists (Di Bella Method – DBM) associated with Temozolomide;

- Chronic Lymphocytic Leukemia: Long-Lasting Remission with Combination of Cyclophosphamide, Somatostatin, Bromocriptine, Retinoids, Melatonin, and ACTH;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in advanced non-small-cell lung cancer patients with low performance status;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in chemotherapy-pretreated patients with advanced lung adenocarcinoma and low performance status;

- Observations on the Report of a case of pulmonary adenocarcinoma with lymph node, hepatic and osseus metastasis;

- Neuroblastoma: Complete objective response to biological treatment;

- Oesophageal squamocellular carcinoma: a complete and objective response.