Melatonin and vitamin D3 increase TGF-beta1 release and induce growth inhibition in breast cancer cell cultures

Print
Published on Friday, 21 October 2016

Abstract

BACKGROUND: Evidence has accumulated that 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] is involved in the regulation of the proliferation of breast tumor cells. For complete tumor suppression high hypercalcemic doses of 1,25-(OH)(2)D(3) are needed. The aim of this study was to assess the effect of combined treatment of 1,25-(OH)(2)D(3) at low doses and melatonin (MEL) on the proliferation of estrogen-responsive rat breast cancer cell line RM4.

MATERIALS AND METHODS: RM4 cell proliferation was assessed by [3H]thymidine uptake. The presence of TGF-beta(1) in serum-free conditioned medium was determined by inhibition antibody binding assay.

RESULTS: In 17-betaE cultured RM4 cells both MEL and 1,25-(OH)(2)D(3) alone and in combination significantly reduced [3H]thymidine incorporation in a dose-related fashion. MEL by itself was ineffective in inhibiting the FCS-cultured RM4 cells, while 1,25-(OH)(2)D(3) strongly inhibited [3H]thymidine incorporation. Meanwhile, MEL increased the sensitivity of the FCS-cultured RM4 cells to 1,25-(OH)(2)D(3) in the combined regimen, from 20- to 100-fold. MEL significantly enhanced the TGF-beta(1) secretion from RM4 cells and vitamin D(3) increased the TGF-beta(1) secretion in a dose-dependent manner, from 2- to 7-fold. Moreover, a further enhancement of the TGF-beta(1) release was obtained with the combined treatment, but only for low 1,25-(OH)(2)D(3) concentrations. The addition of monoclonal anti-TGF-beta(1) antibody to the medium of RM4 cells exposed to vitamin D(3) alone or in combination with MEL increased the [3H]thymidine uptake compared to the correspondent cells cultured without antibody.

CONCLUSIONS: Our data point to a potential benefit of combination therapy with 1,25-(OH)(2)D(3) and MEL in the treatment of breast cancer and suggest that the growth inhibition could be related, at least in part, to the enhanced TGF-beta(1) secretion.

 

 

About this publication.

 

See also:

- About Melatonin;

- Vitamin D (analogues and/or derivatives) and cancer;

- Evaluation of the safety and efficacy of the first-line treatment with somatostatin combined with melatonisn, retinoids, vitamin D3, and low doses of cyclophosphamide in 20 cases of breast cancer: a preliminary report;

- The Di Bella Method (DBM) improved survival, objective response and performance status in a retrospective observational clinical study on 122 cases of breast cancer;

- Complete objective response to biological therapy of plurifocal breast carcinoma;

- Chronic Lymphocytic Leukemia: Long-Lasting Remission with Combination of Cyclophosphamide, Somatostatin, Bromocriptine, Retinoids, Melatonin, and ACTH;

- The Di Bella Method (DBM) in the treatment of prostate cancer: a preliminary retrospective study of 16 patients and a review of the literature.