New signalling pathway involved in the anti-proliferative action of vitamin D₃ and its analogues in human neuroblastoma cells. A role for ceramide kinase

Print
Published on Wednesday, 13 September 2017

Abstract

1α,25-Dihydroxyvitamin D3 (1,25(OH)₂D₃), a crucial regulator of calcium/phosphorus homeostasis, has important physiological effects on growth and differentiation in a variety of malignant and non-malignant cells. Synthetic structural hormone analogues, with lower hypercalcemic side effects, are currently under clinical investigation.

Sphingolipids appear to be crucial bioactive factors in the control of the cell fate: the phosphorylated forms, sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P), are mitogenic factors, whereas sphingosine and ceramide (Cer) usually act as pro-apoptotic agents. Although many studies correlate S1P function to impaired cell growth, the relevance of C1P/Cer system and its involvement in neuroblastoma cells remain to be clarified.

Here, we demonstrated the anti-proliferative effect of 1,25(OH)₂D₃ as well as of its structural analogues, ZK156979 and ZK191784, in human SH-SY5Y cells, as judged by [³H]thymidine incorporation, cell growth and evaluation of active ERK1/2 levels. The inhibition of ceramide kinase (CerK), the enzyme responsible for C1P synthesis, by specific gene silencing or pharmacological inhibition, drastically reduced cell proliferation. 1,25(OH)₂D₃ and ZK191784 treatment induced a significant decrease in CerK expression and C1P content, and an increase of Cer. Notably, the treatment of SH-SY5Y cells with ZK159222, antagonist of 1,25(OH)₂D₃ receptor, trichostatin A, inhibitor of histone deacetylases, and COUP-TFI-siRNA prevented the decrease of CerK expression elicited by 1,25(OH)₂D₃ supporting the involvement of VDR/COUP-TFI/histone deacetylase complex in CerK regulation.

Altogether, these findings provide the first evidence that CerK/C1P axis acts as molecular effector of the anti-proliferative action of 1,25(OH)₂D₃ and its analogues, thereby representing a new possible target for anti-cancer therapy of human neuroblastoma.

 

 

About this publication.

 

See also:

- Vitamin D (analogues and/or derivatives) and cancer;

- All-Trans-Retinoic Acid (ATRA - analogues and/or derivatives);

- Solution of retinoids in vitamin E in the Di Bella Method biological multitherapy;

- Neuroblastoma: Complete objective response to biological treatment;

- Recurrent Glioblastoma Multiforme (grade IV – WHO 2007): a case of complete objective response achieved by means of the concomitant administration of Somatostatin and Octreotide – Retinoids – Vitamin E – Vitamin D3 – Vitamin C – Melatonin – D2 R agonists (Di Bella Method – DBM) associated with Temozolomide;

- Evaluation of the safety and efficacy of the first-line treatment with somatostatin combined with melatonisn, retinoids, vitamin D3, and low doses of cyclophosphamide in 20 cases of breast cancer: a preliminary report;

- The Di Bella Method (DBM) improved survival, objective response and performance status in a retrospective observational clinical study on 122 cases of breast cancer;

- Complete objective response to biological therapy of plurifocal breast carcinoma;

- The Di Bella Method (DBM) in the treatment of prostate cancer: a preliminary retrospective study of 16 patients and a review of the literature;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in advanced non-small-cell lung cancer patients with low performance status;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in chemotherapy-pretreated patients with advanced lung adenocarcinoma and low performance status;

- Observations on the Report of a case of pulmonary adenocarcinoma with lymph node, hepatic and osseus metastasis;

- Chronic Lymphocytic Leukemia: Long-Lasting Remission with Combination of Cyclophosphamide, Somatostatin, Bromocriptine, Retinoids, Melatonin, and ACTH.