Growth hormone receptor blockade inhibits growth hormone-induced chemoresistance by restoring cytotoxic-induced apoptosis in breast cancer cells independently of estrogen receptor expression
Abstract
Context: GH and IGF-I play a role in breast cancer (BC) development. We previously demonstrated that GH protects the estrogen receptor (ER) positive BC-derived MCF7 cell line toward the cytotoxic effects of doxorubicin (D), independently of IGF-I. This issue may be important in ER negative BC cells that are more aggressive and more likely to develop chemoresistance.
Aim of the study: The aim of this study was to evaluate whether GH may impact chemoresistance phenotype of ER-negative BC-derived MDA-MB-231 cell line and investigate the possible mechanisms implicated in the protective action of GH toward the cytotoxic effects of D in both ER-positive and ER-negative BC-derived cell lines.
Results: GH protects ER-negative MDA-MB-231 cells from the cytotoxic effects of D and GH receptor antagonist pegvisomant reduces GH-induced DNA synthesis also in these cells. In both MDA-MB-231 and MCF7 cells, GH does not revert D-induced G2/M accumulation but significantly reduces basal and D-induced apoptosis, an effect blocked by pegvisomant. Glutathione S-transferase activity is not implicated in the protective effects of GH, whereas D-induced apoptosis depends on c-Jun N terminal kinase (JNK) activation. GH reduces both basal and D-stimulated JNK transcriptional activity and phosphorylation.
Conclusions: In human BC cell lines, GH directly promotes resistance to apoptosis induced by chemotherapeutic drugs independently of ER expression by modulating JNK, further broadening the concept that GH excess may hamper cytotoxic BC treatment. These findings support the hypothesis that blocking GH receptor may be viewed as a potential new therapeutic approach to overcome chemoresistance, especially in ER-negative BC.
See also:
- Official Web Site: The Di Bella Method;
- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;
- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);
- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes (from Di Bella's Foundation);
- Publication, 2020 Sep: Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives (from Di Bella's Foundation);
- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);
- Complete objective response to biological therapy of plurifocal breast carcinoma;
- Neuroblastoma: Complete objective response to biological treatment;
- Oesophageal squamocellular carcinoma: a complete and objective response;
- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;