Analysis of insulin-like growth factor I gene expression in malignancy: evidence for a paracrine role in human breast cancer

Print
Published on Friday, 30 November 2018

Abstract

Insulin-like growth factor I (IGF-I) activity has been reported to be produced by several human cancers.

Identification of RNAs transcribed from the IGF-I gene has been complicated by the detection of multiple hybridizing bands on Northern analysis.

To determine if any of these RNAs are transcribed from the IGF-I gene, we have used a sensitive and specific ribonuclease (RNAse) protection assay for IGF-I.

We have also studied the breast cancer tissue expression of IGF-I using in situ hybridization histochemistry. We have found no IGF-I mRNA in breast (zero of 11) or colon cancer (zero of 9) cell lines; both of these tumors have been previously reported to express IGF-I mRNA.

However, three of three neuroepithelioma and one of two Ewing's sarcoma cell lines express IGF-I mRNA; therefore, in these tumors IGF-I may be an autocrine growth factor.

In contrast to breast cancer cell lines, RNA extracted from breast tissues has easily detectable IGF-I mRNA. In situ hybridizations show that IGF-I mRNA is expressed in the stromal cells, and not by normal or malignant epithelial cells.

These findings suggest that although IGF-I is not produced by breast epithelial cells it may function as either a paracrine stimulator of epithelial cells or an autocrine stimulator of stromal cells.

 

About this publication.

See also:

- Official Web Site: The Di Bella Method;

- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;

- The Di Bella Method (A Fixed Part - Somatostatin, Octreotide, Sandostatin LAR, analogues and/or derivatives);

- The Synergism of Somatostatin, Melatonin, Vitamins Prolactin and Estrogen Inhibitors Increased Survival, Objective Response and Performance Status In 297 Cases of Breast Cancer;

- Complete objective response, stable for 5 years, with the Di Bella Method, of multiple-metastatic carcinoma of the breast;

- Evaluation of the safety and efficacy of the first-line treatment with somatostatin combined with melatonin, retinoids, vitamin D3, and low doses of cyclophosphamide in 20 cases of breast cancer: a preliminary report;

- The Di Bella Method (DBM) improved survival, objective response and performance status in a retrospective observational clinical study on 122 cases of breast cancer;

- Complete objective response to biological therapy of plurifocal breast carcinoma;

- Recurrent Glioblastoma Multiforme (grade IV – WHO 2007): a case of complete objective response achieved by means of the concomitant administration of Somatostatin and Octreotide – Retinoids – Vitamin E – Vitamin D3 – Vitamin C – Melatonin – D2 R agonists (Di Bella Method – DBM) associated with Temozolomide;

- The Di Bella Method DBM improved survival objective response and performance status in a retrospective observational clinical study on 23 tumours of the head and neck;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in advanced non-small-cell lung cancer patients with low performance status;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in chemotherapy-pretreated patients with advanced lung adenocarcinoma and low performance status;

- Observations on the Report of a case of pulmonary adenocarcinoma with lymph node, hepatic and osseus metastasis;

- Neuroblastoma: Complete objective response to biological treatment;

- Oesophageal squamocellular carcinoma: a complete and objective response;

- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;

- The Di Bella Method Increases by the 30% the survival rate for Pancreas tumors and for this reason should be proposed as first line therapy for this type of cancer;

- The Di Bella Method (DBM) in the treatment of prostate cancer: a preliminary retrospective study of 16 patients and a review of the literature;

- Congenital fibrosarcoma in complete remission with Somatostatin, Retinoids, Vitamin D3, Vitamin E, Vitamin C, Melatonin, Calcium, Chondroitin sulfate associated with low doses of Cyclophosphamide in a 14-year Follow Up.