Growth hormone-releasing hormone receptor antagonists modify molecular machinery in the progression of prostate cancer
Abstract
BACKGROUND: Therapeutic strategies should be designed to transform aggressive prostate cancer phenotypes to a chronic situation. To evaluate the effects of the new growth hormone-releasing hormone receptor (GHRH-R) antagonists: MIA-602, MIA-606, and MIA-690 on processes associated with cancer progression as cell proliferation, adhesion, migration, and angiogenesis.
METHODS: We used three human prostate cell lines (RWPE-1, LNCaP, and PC3). We analyzed several molecules such as E-cadherin, β-catenin, Bcl2, Bax, p53, MMP2, MMP9, PCNA, and VEGF and signaling mechanisms that are involved on effects exerted by GHRH-R antagonists.
RESULTS: GHRH-R antagonists decreased cell viability and provoked a reduction in proliferation in LNCaP and PC3 cells. Moreover, GHRH-R antagonists caused a time-dependent increase of cell adhesion in all three cell lines and retarded the wound closure with the highest value with MIA-690 in PC3 cells. GHRH-R antagonists also provoked a large number of cells in SubG0 phase revealing an increase in apoptotic cells in PC3 cell line.
CONCLUSIONS: Taken all together, GHRH-R antagonists of the MIAMI series appear to be inhibitors of tumor progression in prostate cancer and should be considered for use in future therapeutic strategies on this malignancy.
See also:
- Official Web Site: The Di Bella Method;
- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);
- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;
- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);
- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);
- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;
- Oesophageal squamocellular carcinoma: a complete and objective response;
- Neuroblastoma: Complete objective response to biological treatment;
- Complete objective response to biological therapy of plurifocal breast carcinoma.






