Cellular expression of growth hormone and prolactin receptors in human breast disorders

Print
Published on Wednesday, 30 January 2019

Abstract

Growth hormone (GH) and prolactin (PRL) exert their regulatory functions in the mammary gland by acting on specific receptors.

Using isotopic in situ hybridization and immunohistochemistry, we have localized the expression of hGH receptor (hGHR) and hPRL receptor (hPRLR) in a panel of human breast disorders.

Surgical specimens from adult females included normal breast, inflammatory lesions (mastitis) benign proliferative breast disease (fibroadenoma, papilloma, adenosis, epitheliosis), intraductal carcinoma or lobular carcinoma in situ, and invasive ductal, lobular or medullary carcinoma.

Cases of male breast enlargement (gynecomastia) were also studied. In situ hybridization analysis demonstrated the co-expression of hGHR and hPRLR mRNA in all samples tested.

Epithelial cells of both normal and tumor tissues were labelled. Quantitative estimation of receptor mRNA levels was regionally measured in areas corresponding to tumor cells and adipose cells from the same section. It demonstrated large individual variation and no correlation emerged according to the histological type of lesion. Receptor immunoreactivity was detected both in the cytoplasm and nuclei or in the cytoplasm alone. Scattered stromal cells were found positive in some cases, but the labeling intensity was always weaker than for neoplastic epithelial cells.

Our results demonstrate the expression of the hGHR and hPRLR genes and their translation in epithelial cells of normal, proliferative and neoplastic lesions of the breast.

They also demonstrate that stromal components express GHR and PRLR genes.

Thus the putative role of hGH or hPRL in the progression of proliferative mammary disorders is not due to grossly altered levels of receptor expression.

 

About this publication.

See also:

- Official Web Site: The Di Bella Method;

- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);

- The Di Bella Method (A Fixed Part - Cyclophosphamide 50mg tablets and/or Hydroxyurea 500mg tablets, one or two per day);

- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;

- The Di Bella Method (A Fixed Part - Somatostatin, Octreotide, Sandostatin LAR, analogues and/or derivatives);

- The Synergism of Somatostatin, Melatonin, Vitamins Prolactin and Estrogen Inhibitors Increased Survival, Objective Response and Performance Status In 297 Cases of Breast Cancer;

- Complete objective response, stable for 5 years, with the Di Bella Method, of multiple-metastatic carcinoma of the breast;

- Evaluation of the safety and efficacy of the first-line treatment with somatostatin combined with melatonin, retinoids, vitamin D3, and low doses of cyclophosphamide in 20 cases of breast cancer: a preliminary report;

- The Di Bella Method (DBM) improved survival, objective response and performance status in a retrospective observational clinical study on 122 cases of breast cancer;

- Complete objective response to biological therapy of plurifocal breast carcinoma;

- Cyclophosphamide plus Somatostatin, Bromocriptin, Retinoids, Melatonin and ACTH in the Treatment of Low-grade Non-Hodgkin’s Lymphomas at Advanced Stage: Results of a Phase II Trial;

- Relapse of High-Grade Non-Hodgkin’s Lymphoma After Autologous Stem Cell Transplantation: A Case Successfully Treated With Cyclophosphamide Plus Somatostatin, Bromocriptine, Melatonin, Retinoids, and ACTH;

- Low-grade Non-Hodgkin Lymphoma at Advanced Stage: A Case Successfully Treated With Cyclophosphamide Plus Somatostatin, Bromocriptine, Retinoids, and Melatonin;

- The Di Bella Method (DBM) improved survival, objective response and performance status in a retrospective observational clinical study on 55 cases of Lymphomas;

- Large B-cells Non-Hodgkin's Lymphoma, Stage IV-AE: a Case Report;

- Non-Hodgkin's Lymphoma, Stage III-B-E: a Case Report.