Antioxidant functions of vitamins. Vitamins E and C, beta-carotene, and other carotenoids

Print
Published on Wednesday, 03 July 2019

Abstract

Tocopherols and tocotrienols (vitamin E) and ascorbic acid (vitamin C) as well as the carotenoids react with free radicals, notably peroxyl radicals, and with singlet molecular oxygen (1O2), this being the basis of their function as antioxidants.

RRR-alpha-tocopherol is the major peroxyl radical scavenger in biological lipid phases such as membranes or low-density lipoproteins (LDL).

L-Ascorbate is present in aqueous compartments (e.g. cytosol, plasma, and other body fluids) and can reduce the tocopheroxyl radical; it also has a number of metabolically important cofactor functions in enzyme reactions, notably hydroxylations.

Upon oxidation, these micronutrients need to be regenerated in the biological setting, hence the need for further coupling to nonradical reducing systems such as glutathione/glutathione disulfide, dihydrolipoate/lipoate, or NADPH/NADP+ and NADH/NAD+.

Carotenoids, notably beta-carotene and lycopene as well as oxycarotenoids (e.g. zeaxanthin and lutein), exert antioxidant functions in lipid phases by free-radical or 1O2 quenching.

There are pronounced differences in tissue carotenoid patterns, extending also to the distribution between the all-trans and various cis isomers of the respective carotenoids. Antioxidant functions are associated with lowering DNA damage, malignant transformation, and other parameters of cell damage in vitro as well as epidemiologically with lowered incidence of certain types of cancer and degenerative diseases, such as ischemic heart disease and cataract. They are of importance in the process of aging.

Reactive oxygen species occur in tissues and cells and can damage DNA, proteins, carbohydrates, and lipids. These potentially deleterious reactions are controlled in part by antioxidants that eliminate prooxidants and scavenge free radicals. Their ability as antioxidants to quench radicals and 1O2 may explain some anticancer properties of the carotenoids independent of their provitamin A activity, but other functions may play a role as well. Tocopherols are the most abundant and efficient scavengers of peroxyl radicals in biological membranes.

The water-soluble antioxidant vitamin C can reduce tocopheroxyl radicals directly or indirectly and thus support the antioxidant activity of vitamin E; such functions can be performed also by other appropriate reducing compounds such as glutathione (GSH) or dihydrolipoate.

The biological efficacy of the antioxidants is also determined by their biokinetics.

 

About this publication.

See also:

- Official Web Site: The Di Bella Method;

- The Di Bella Method (A Fixed Part - Alpha tocopheryl acetate/Vitamin E, approximately 20 grams per day orally);

- Solution of retinoids in vitamin E in the Di Bella Method biological multitherapy;

- The Di Bella Method (A Fixed Part - All-Trans Retinoic Acid, Analogues and/or Derivatives - Approximately 60mg per day orally: 40mg per day Beta-Carotene/β-Carotene, 10mg per day ATRA and 10mg per day Axerophthol palmitate);

- All-Trans-Retinoic Acid (ATRA - analogues and/or derivatives) - In vitro, review and in vivo publications;

- The Di Bella Method (A Fixed Part - Vitamin C/Ascorbic Acid, 2–4 grams, twice a day orally);

- Beta-Carotene or β-carotene in Solution of retinoids in vitamin E in the Di Bella Method biological multitherapy;

- The Di Bella Method (A Variable Part - Selenium methonine, 40 μg capsules, twice a day);

- The Di Bella Method (A Variable Part - Omega 3 Essential/Unsaturated Fatty Acids. From 1.5 grams up to 3.0 grams per day orally);

- The Synergism of Somatostatin, Melatonin, Vitamins Prolactin and Estrogen Inhibitors Increased Survival, Objective Response and Performance Status In 297 Cases of Breast Cancer;

- Complete objective response, stable for 5 years, with the Di Bella Method, of multiple-metastatic carcinoma of the breast;

- Evaluation of the safety and efficacy of the first-line treatment with somatostatin combined with melatonin, retinoids, vitamin D3, and low doses of cyclophosphamide in 20 cases of breast cancer: a preliminary report;

- The Di Bella Method (DBM) improved survival, objective response and performance status in a retrospective observational clinical study on 122 cases of breast cancer;

- Complete objective response to biological therapy of plurifocal breast carcinoma;

- Recurrent Glioblastoma Multiforme (grade IV – WHO 2007): a case of complete objective response achieved by means of the concomitant administration of Somatostatin and Octreotide – Retinoids – Vitamin E – Vitamin D3 – Vitamin C – Melatonin – D2 R agonists (Di Bella Method – DBM) associated with Temozolomide;

- The Di Bella Method DBM improved survival objective response and performance status in a retrospective observational clinical study on 23 tumours of the head and neck;

- Chronic Lymphocytic Leukemia: Long-Lasting Remission with Combination of Cyclophosphamide, Somatostatin, Bromocriptine, Retinoids, Melatonin, and ACTH;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in advanced non-small-cell lung cancer patients with low performance status;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in chemotherapy-pretreated patients with advanced lung adenocarcinoma and low performance status;

- Observations on the Report of a case of pulmonary adenocarcinoma with lymph node, hepatic and osseus metastasis;

- Pleural Mesothelioma: clinical records on 11 patients treated with Di Bella's Method;

- Malignant pleural mesothelioma, stage T3-T4. Consideration of a case study;

- Excellent result in a Mesothelioma case treated exclusively with Di Bella Method for over 4 years and still treatment with positive results;

- A case of advanced Multiple Myeloma treated with Di Bella Method (DBM) into total remission for 13 years;

- Neuroblastoma: Complete objective response to biological treatment;

- Cyclophosphamide plus Somatostatin, Bromocriptin, Retinoids, Melatonin and ACTH in the Treatment of Low-grade Non-Hodgkin’s Lymphomas at Advanced Stage: Results of a Phase II Trial;

- Relapse of High-Grade Non-Hodgkin’s Lymphoma After Autologous Stem Cell Transplantation: A Case Successfully Treated With Cyclophosphamide Plus Somatostatin, Bromocriptine, Melatonin, Retinoids, and ACTH;

- Low-grade Non-Hodgkin Lymphoma at Advanced Stage: A Case Successfully Treated With Cyclophosphamide Plus Somatostatin, Bromocriptine, Retinoids, and Melatonin;

- The Di Bella Method (DBM) improved survival, objective response and performance status in a retrospective observational clinical study on 55 cases of Lymphomas;

- Large B-cells Non-Hodgkin's Lymphoma, Stage IV-AE: a Case Report;

- Non-Hodgkin's Lymphoma, Stage III-B-E: a Case Report;

- Oesophageal squamocellular carcinoma: a complete and objective response;

- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;

- The Di Bella Method Increases by the 30% the survival rate for Pancreas tumors and for this reason should be proposed as first line therapy for this type of cancer;

- The Di Bella Method (DBM) in the treatment of prostate cancer: a preliminary retrospective study of 16 patients and a review of the literature;

- Congenital fibrosarcoma in complete remission with Somatostatin, Retinoids, Vitamin D3, Vitamin E, Vitamin C, Melatonin, Calcium, Chondroitin sulfate associated with low doses of Cyclophosphamide in a 14-year Follow Up.