1,25-Dihydroxyvitamin D3 induces programmed cell death in a rat glioma cell line
Abstract
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3), a seco-steroid hormone with potential antitumoral activities, has been recently reported to exert cytotoxic effects on C6 glioma cells. However, the molecular mechanisms which trigger this cell death remain unknown.
We show here that this 1,25(OH)2D3-induced cell death is dependent upon protein synthesis and is accompanied by the expression of c-myc, p53, and gadd45 genes. Two other genes, coding for interleukin-6 and vaso-endothelial growth factor, are also upregulated after addition of 1,25(OH)2D3.
This programmed cell death can be suppressed when cells are treated with forskolin, a drug which increases intracellular cAMP concentration, or with genistein, an inhibitor of tyrosine protein kinases. However, in spite of the demonstration of fragmented DNA in 1,25(OH)2D3-treated cells, the C6.9 cells used in this study do not show the classical morphological features of apoptosis.
These results provide the first evidence for the existence of a programmed cell death triggered by 1,25(OH)2D3 in glioma cells and may provide a basis for the development of new therapeutic strategies.
In addition, these data also suggest that the treatment of C6.9 cells with 1,25(OH)2D3 may be a useful model to study the molecular mechanisms involved in the programmed cell death of a cell of glial origin.
See also:
- Official Web Site: The Di Bella Method;
- The Di Bella Method (A Fixed Part - Dihydrotachysterol, Alfacalcidol, synthetic Vitamin D3);
- Vitamin D (analogues and/or derivatives) and cancer - In vitro, review and in vivo publications;
- Solution of retinoids in vitamin E in the Di Bella Method biological multitherapy;
- The Di Bella Method (A Variable Part - Selenium methonine, 40 μg capsules, twice a day);
- The Di Bella Method (A Fixed Part - Calcium, 2 grams per day, orally);
- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;
- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);
- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes (from Di Bella's Foundation);
- Publication, 2020 Sep: Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives (from Di Bella's Foundation);
- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);
- Prolactin inhibitors in oncology - In vitro, review and in vivo publications;
- Neuroblastoma: Complete objective response to biological treatment;
- Oesophageal squamocellular carcinoma: a complete and objective response;
- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;
- Complete objective response to biological therapy of plurifocal breast carcinoma.