Vitamin D regulates the phenotype of human breast cancer cells

Print
Published on Tuesday, 16 May 2017

Abstract

1alpha,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), the most active vitamin D metabolite, regulates proliferation, survival, and differentiation in many cell types. 1,25(OH)(2)D(3) and several less calcemic analogs are in clinical trials against various neoplasias.

We studied the effects of 1,25(OH)(2)D(3) on a panel of human breast cancer cells, which show similar vitamin D receptor (VDR) content but variable transcriptional and anti-proliferative responsiveness.

In MDA-MB-453 cells, one of the responsive lines, 1,25(OH)(2)D(3) increased cell and nuclear size and induced a change from a rounded to a flattened morphology. By phase contrast, laser confocal and electron microscopy, we found that 1,25(OH)(2)D(3) changed the cytoarchitecture of actin filaments and microtubules and nuclear shape, induced filopodia and lamellipodia, and promoted cell-to-cell contacts via large cytoplasmic extensions. However, although claudin-7 and occludin content in the cells increased upon exposure to 1,25(OH)(2)D(3), these proteins were not located at the plasma membrane probably due to the absence of E-cadherin expression.

Additionally, 1,25(OH)(2)D(3) induced the accumulation of alpha(v)-integrin, beta(5)-integrin, focal adhesion kinase (FAK), and paxillin in focal adhesion plaques, concomitant with the increased phosphorylation of the FAK. 1,25(OH)(2)D(3) enhanced MDA-MB-453 and MDA-MB-468 cell adhesion to plastic but decreased adhesion to laminin.

The expression of the mesenchymal marker N-cadherin and of the myoepithelial marker P-cadherin was down-regulated by 1,25(OH)(2)D(3) in several breast cancer cell lines.

Other myoepithelial proteins such as alpha(6)-integrin, beta(4)-integrin, and smooth muscle alpha-actin (SMA) were also repressed by 1,25(OH)(2)D(3) in MDA-MB-453 and MDA-MB-468 cells.

Accordingly, mice lacking VDR (Vdr(-/-)) showed abnormally high levels of SMA and P-cadherin in their mammary gland.

These findings show that 1,25(OH)(2)D(3) profoundly affects the phenotype of breast cancer cells, and suggest that it reverts the myoepithelial features associated with more aggressive forms and poor prognosis in human breast cancer.

 

 

About this publication.

 

See also:

- Vitamin D (analogues and/or derivatives) and cancer;

- Congenital fibrosarcoma in complete remission with Somatostatin, Retinoids, Vitamin D3, Vitamin E, Vitamin C, Melatonin, Calcium, Chondroitin sulfate associated with low doses of Cyclophosphamide in a 14-year Follow Up;

- The Di Bella Method (DBM) in the treatment of prostate cancer: a preliminary retrospective study of 16 patients and a review of the literature;

- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;

- The Di Bella Method Increases by the 30% the survival rate for Pancreas tumors and for this reason should be proposed as first line therapy for this type of cancer;

- Chronic Lymphocytic Leukemia: Long-Lasting Remission with Combination of Cyclophosphamide, Somatostatin, Bromocriptine, Retinoids, Melatonin, and ACTH;

- Evaluation of the safety and efficacy of the first-line treatment with somatostatin combined with melatonisn, retinoids, vitamin D3, and low doses of cyclophosphamide in 20 cases of breast cancer: a preliminary report;

- The Di Bella Method (DBM) improved survival, objective response and performance status in a retrospective observational clinical study on 122 cases of breast cancer;

- Complete objective response to biological therapy of plurifocal breast carcinoma.