Akt regulates vitamin D3-induced leukemia cell functional differentiation via Raf/MEK/ERK MAPK signaling

Print
Published on Wednesday, 28 June 2017

Abstract

1,25-dihydroxyvitamin D3 (vitamin D3) induces differentiation of HL-60 human myeloid leukemia cells; however, the signaling mechanism governing these effects is not fully clear.

Here, we show that vitamin D3 induced functional differentiation by Akt through Raf/MEK/ERK MAPK signaling.

Vitamin D3 downregulated Akt, weakened Akt-Raf1 interaction, and subsequently activated the Raf/MEK/ERK MAPK pathway. Pharmacological inhibition of MEK/ERK crippled differentiation in response to vitamin D3. Ectopic overexpression of Akt inhibited MAPK signaling, downregulated cyclin-dependent kinase (CDK) inhibitors p21(Wip1/Cip1) and p27(Kip1) and blunted differentiation in response to vitamin D3 while knockdown of Akt by RNA interference gave reverse effects.

Furthermore, knockdown of the CDK inhibitors by siRNA crippled the recruitment of retinoblastoma protein (Rb) from the Raf1-Rb complex and Rb hypophosphorylation, and abolished differentiation in response to vitamin D3. Vitamin D3-induced MAPK signaling mediated upregulation of the CDK inhibitors and Rb, disassociation of Raf1 and Rb, and dephosphorylation of Rb, resulting in Rb binding to transcription factor E2F1 and subsequent differentiation.

Finally, knockdown of Rb by siRNA prevented vitamin D3-induced differentiation. Mutating Rb at Ser795 evokes its association with E2F1, indicating the critical role of Rb Ser795 in regulating cell differentiation.

Taken together, our data suggest that vitamin D3-triggered differentiation of human myeloid leukemia cells depends on downregulation of Akt, which dissociates from Raf1 and activates MAPK signaling leading to CDK inhibitor upregulation, Raf1 disassociation from Rb, and Rb upregulation and hypophosphorylation coupled to E2F1 binding.

 

 

About this publication.

 

See also:

- Vitamin D (analogues and/or derivatives) and cancer;

- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;

- The Di Bella Method Increases by the 30% the survival rate for Pancreas tumors and for this reason should be proposed as first line therapy for this type of cancer;

- Cyclophosphamide plus Somatostatin, Bromocriptin, Retinoids, Melatonin and ACTH in the Treatment of Low-grade Non-Hodgkin’s Lymphomas at Advanced Stage: Results of a Phase II Trial;

- Relapse of High-Grade Non-Hodgkin’s Lymphoma After Autologous Stem Cell Transplantation: A Case Successfully Treated With Cyclophosphamide Plus Somatostatin, Bromocriptine, Melatonin, Retinoids, and ACTH;

- Low-grade Non-Hodgkin Lymphoma at Advanced Stage: A Case Successfully Treated With Cyclophosphamide Plus Somatostatin, Bromocriptine, Retinoids, and Melatonin;

- The Di Bella Method (DBM) improved survival, objective response and performance status in a retrospective observational clinical study on 55 cases of Lymphomas;

- Large B-cells Non-Hodgkin's Lymphoma, Stage IV-AE: a Case Report;

- Non-Hodgkin's Lymphoma, Stage III-B-E: a Case Report;

- A case of advanced Multiple Myeloma treated with Di Bella Method (DBM) into total remission for 13 years;

- Chronic Lymphocytic Leukemia: Long-Lasting Remission with Combination of Cyclophosphamide, Somatostatin, Bromocriptine, Retinoids, Melatonin, and ACTH;

- Evaluation of the safety and efficacy of the first-line treatment with somatostatin combined with melatonisn, retinoids, vitamin D3, and low doses of cyclophosphamide in 20 cases of breast cancer: a preliminary report;

- The Di Bella Method (DBM) improved survival, objective response and performance status in a retrospective observational clinical study on 122 cases of breast cancer;

- Complete objective response to biological therapy of plurifocal breast carcinoma.