Antagonists of growth hormone-releasing hormone inhibit the proliferation of experimental non-small cell lung carcinoma

Print
Published on Thursday, 06 July 2017

Abstract

Recent studies show that antagonists of growth hormone-releasing hormone (GH-RH) inhibit proliferation of various cancers indirectly through blockage of the endocrine GH-insulin-like growth factor (IGF) I axis and directly by an action on tumor cells involving the suppression of autocrine/paracrine IGF-I, IGF-II, or GH-RH.

The effectiveness of therapy with GH-RH antagonist JV-1-38 and its mechanisms of action were investigated in NCI-H838 non-small cell lung carcinoma (NSCLC) xenografted s.c. into nude mice and in vitro.

Treatment with GH-RH antagonist JV-1-38 significantly (P < 0.05-0.001) inhibited tumor growth as demonstrated by a 58% decrease in final tumor volume, 54% reduction in tumor weight, and the extension of tumor-doubling time from 8.5 +/- 1.38 to 12 +/- 1.07 days as compared with controls.

Using ligand competition assays with (125)I-labeled GH-RH antagonist JV-1-42, specific high-affinity binding sites for GH-RH were found on tumor membranes. Reverse transcription-PCR revealed the expression of mRNA for GH-RH and splice variant 1 (SV(1)) of GH-RH receptor in H838 tumors. Reverse transcription-PCR analysis also demonstrated that H838 tumors express IGF-I and IGF-I receptors. Tumoral concentration of IGF-I and its mRNA expression were significantly decreased by 25% (P = 0.05) and 65% (P < 0.001), respectively, in animals receiving JV-1-38, whereas serum IGF-I levels remained unchanged.

In vitro studies showed that H838 cells secreted GH-RH and IGF-I into the medium. The growth of tumor cells in vitro was stimulated by IGF-I and inhibited by GH-RH antagonist JV-1-38 and a GH-RH antiserum.

Our results extend the findings on the involvement of IGF-I in NSCLC and suggest that GH-RH may be an autocrine growth factor for H838 NSCLC.

The antitumorigenic action of GH-RH antagonists could be partly direct and mediated by SV(1) of tumoral GH-RH receptors.

The finding of GH-RH and SV(1) of GH-RH receptors in NSCLC provides a new approach to the treatment of this malignancy based on the use of antagonistic analogues of GH-RH.

 

About this publication.

See also:

- Official Web Site: The Di Bella Method;

- The Di Bella Method (A Fixed Part - Somatostatin, Octreotide, Sandostatin LAR, analogues and/or derivatives);

- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;

- Publication: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);

- Publication: The over-expression of GH/GHR in tumour tissues with respect to healthy ones confirms its oncogenic role and the consequent oncosuppressor role of its physiological inhibitor, somatostatin: a review of the literature (from Di Bella's Foundation);

- Publication: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in advanced non-small-cell lung cancer patients with low performance status;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in chemotherapy-pretreated patients with advanced lung adenocarcinoma and low performance status;

- Observations on the Report of a case of pulmonary adenocarcinoma with lymph node, hepatic and osseus metastasis;

- Congenital fibrosarcoma in complete remission with Somatostatin, Retinoids, Vitamin D3, Vitamin E, Vitamin C, Melatonin, Calcium, Chondroitin sulfate associated with low doses of Cyclophosphamide in a 14-year Follow Up.

- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;

- The Di Bella Method Increases by the 30% the survival rate for Pancreas tumors and for this reason should be proposed as first line therapy for this type of cancer;

- The Di Bella Method (DBM) in the treatment of prostate cancer: a preliminary retrospective study of 16 patients and a review of the literature;

- Oesophageal squamocellular carcinoma: a complete and objective response;

- Neuroblastoma: Complete objective response to biological treatment;

- The Di Bella Method DBM improved survival objective response and performance status in a retrospective observational clinical study on 23 tumours of the head and neck;

- Recurrent Glioblastoma Multiforme (grade IV – WHO 2007): a case of complete objective response achieved by means of the concomitant administration of Somatostatin and Octreotide – Retinoids – Vitamin E – Vitamin D3 – Vitamin C – Melatonin – D2 R agonists (Di Bella Method – DBM) associated with Temozolomide;

- The Synergism of Somatostatin, Melatonin, Vitamins Prolactin and Estrogen Inhibitors Increased Survival, Objective Response and Performance Status In 297 Cases of Breast Cancer;

- Complete objective response, stable for 5 years, with the Di Bella Method, of multiple-metastatic carcinoma of the breast;

- Evaluation of the safety and efficacy of the first-line treatment with somatostatin combined with melatonin, retinoids, vitamin D3, and low doses of cyclophosphamide in 20 cases of breast cancer: a preliminary report;

- The Di Bella Method (DBM) improved survival, objective response and performance status in a retrospective observational clinical study on 122 cases of breast cancer;

- Complete objective response to biological therapy of plurifocal breast carcinoma.