Defining the role of prolactin as an invasion suppressor hormone in breast cancer cells

Print
Published on Thursday, 20 January 2022

Abstract

Prolactin hormone (PRL) is well characterized as a terminal differentiation factor for mammary epithelial cells and as an autocrine growth/survival factor in breast cancer cells. However, this function of PRL may not fully signify its role in breast tumorigenesis.

Cancer is a complex multistep progressive disease resulting not only from defects in cell growth but also in cell differentiation. Indeed, dedifferentiation of tumor cells is now recognized as a crucial event in invasion and metastasis. PRL plays a critical role in inducing/maintaining differentiation of mammary epithelial cells, suggesting that PRL signaling could serve to inhibit tumor progression.

We show here that in breast cancer cells, PRL and Janus-activated kinase 2, a major kinase involved in PRL signaling, play a critical role in regulating epithelial-mesenchymal transformation (EMT), an essential process associated with tumor metastasis. Activation of the PRL receptor (PRLR), achieved by restoring PRL/JAK2 signaling in mesenchymal-like breast cancer cells, MDA-MB-231, suppressed their mesenchymal properties and reduced their invasive behavior. While blocking PRL autocrine function in epithelial-like breast cancer cells, T47D, using pharmacologic and genetic approaches induced mesenchymal-like phenotypic changes and enhanced their invasive propensity.

Moreover, our results indicate that blocking PRL signaling led to activation of mitogen-activated protein kinase (extracellular signal-regulated kinase 1/2) and transforming growth factor-beta/Smad signaling pathways, two major prometastatic pathways.

Furthermore, our results indicate that following PRL/JAK2 inhibition, ERK1/2 activation precedes and is required for Smad2 activation and EMT induction in breast cancer cells.

Together, these results highlight PRL as a critical regulator of epithelial plasticity and implicate PRL as an invasion suppressor hormone in breast cancer.

 

About this publication.

See also:

- Official Web Site: The Di Bella Method;


 


- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);

- The Di Bella Method (A Fixed Part - Somatostatin, Octreotide, Sandostatin LAR, analogues and/or derivatives);

- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;

- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);

- Publication, 2018 Sep: The over-expression of GH/GHR in tumour tissues with respect to healthy ones confirms its oncogenic role and the consequent oncosuppressor role of its physiological inhibitor, somatostatin: a review of the literature (from Di Bella's Foundation);

- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);

- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);

- Publication, 2019 Sep: Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes (from Di Bella's Foundation);

- Publication, 2020 Sep: Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives (from Di Bella's Foundation);

- The Di Bella Method (A Fixed Part - Cyclophosphamide 50mg tablets and/or Hydroxyurea 500mg tablets, one or two per day);


 


- The Synergism of Somatostatin, Melatonin, Vitamins Prolactin and Estrogen Inhibitors Increased Survival, Objective Response and Performance Status In 297 Cases of Breast Cancer;

- Complete objective response, stable for 5 years, with the Di Bella Method, of multiple-metastatic carcinoma of the breast;

- Evaluation of the safety and efficacy of the first-line treatment with somatostatin combined with melatonin, retinoids, vitamin D3, and low doses of cyclophosphamide in 20 cases of breast cancer: a preliminary report;

- The Di Bella Method (DBM) improved survival, objective response and performance status in a retrospective observational clinical study on 122 cases of breast cancer;

- Complete objective response to biological therapy of plurifocal breast carcinoma;

- Chronic Lymphocytic Leukemia: Long-Lasting Remission with Combination of Cyclophosphamide, Somatostatin, Bromocriptine, Retinoids, Melatonin, and ACTH;

- A case of advanced Multiple Myeloma treated with Di Bella Method (DBM) into total remission for 13 years;

- Cyclophosphamide plus Somatostatin, Bromocriptin, Retinoids, Melatonin and ACTH in the Treatment of Low-grade Non-Hodgkin’s Lymphomas at Advanced Stage: Results of a Phase II Trial;

- Relapse of High-Grade Non-Hodgkin’s Lymphoma After Autologous Stem Cell Transplantation: A Case Successfully Treated With Cyclophosphamide Plus Somatostatin, Bromocriptine, Melatonin, Retinoids, and ACTH;

- Low-grade Non-Hodgkin Lymphoma at Advanced Stage: A Case Successfully Treated With Cyclophosphamide Plus Somatostatin, Bromocriptine, Retinoids, and Melatonin;

- The Di Bella Method (DBM) improved survival, objective response and performance status in a retrospective observational clinical study on 55 cases of Lymphomas;

- Large B-cells Non-Hodgkin's Lymphoma, Stage IV-AE: a Case Report;

- Non-Hodgkin's Lymphoma, Stage III-B-E: a Case Report;

- The Di Bella Method (DBM) in the treatment of prostate cancer: a preliminary retrospective study of 16 patients and a review of the literature.