Initial staging of lymphoma with octreotide and other receptor imaging agents
Abstract
Somatostatin receptor scintigraphy is useful in diagnosing tumors with increased expression of somatostatin receptors. The correct use of this technique reveals the localization of neuroendocrine primary tumors and unknown metastases in approximately 90% of patients.
However, somatostatin receptor scintigraphy also can image many other human tumors expressing somatostatin receptors, including malignant lymphomas and thymomas. The sensitivity of somatostatin receptor scintigraphy to image somatostatin receptor-positive tumors is very high, but due to the variable expression of specific receptor subtypes, the specificity can be relatively low. This drawback is crucial in evaluating lymphoproliferative diseases, or, in general, when immune cells are involved.
The sensitivity of somatostatin receptor scintigraphy for Hodgkin's lymphoma is 95%-100%, whereas for non-Hodgkin's lymphoma it is around 80%. It has been shown that the uptake of [(111)In-DTPA(0)]octreotide in lymphomas is lower compared to the uptake in neuroendocrine tumors.
This is mainly attributed to the low number of receptors on immune cells compared to neuroendocrine cells; however, ligand-induced internalization and differential receptor regulation may also participate in determining this phenomenon. Therefore, caution should be taken when interpreting data from some studies.
Several new ligands are currently under study to improve these limits and the expression of other neuropeptide receptors is being investigated to provide a molecular basis for in vivo multireceptor targeting of tumors.
With the use of currently available somatostatin analogs, somatostatin receptor scintigraphy does not seem to have a significant impact in patients with lymphomas for diagnostic purposes. There are a few exceptions, however. Among these, the staging and restaging of extragastric lymphoma MALT-type may present some advantages. Conversely, somatostatin receptor scintigraphy in the imaging of thymic malignancies could enhance both our diagnostic and therapeutic capabilities.
Somatostatin receptor scintigraphy is diagnostically relevant in differentiating malignant from benign lesions, especially in those patients with associated paraneoplastic syndromes, and is the main criterion to select patients suitable for therapy with somatostatin analogs.
Recent findings emerging from in vitro studies on somatostatin receptor physiology in immune cells will certainly reopen and expand the potential applications of somatostatin analogs for in vivo diagnostic and therapeutic options.
See also:
- Official Web Site: The Di Bella Method;
- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;
- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);
- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes (from Di Bella's Foundation);
- Publication, 2020 Sep: Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives (from Di Bella's Foundation);
- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);
- Large B-cells Non-Hodgkin's Lymphoma, Stage IV-AE: a Case Report;
- Non-Hodgkin's Lymphoma, Stage III-B-E: a Case Report;
- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;
- Complete objective response to biological therapy of plurifocal breast carcinoma;
- Neuroblastoma: Complete objective response to biological treatment;
- Oesophageal squamocellular carcinoma: a complete and objective response;






