Colonic vitamin D metabolism: implications for the pathogenesis of inflammatory bowel disease and colorectal cancer

Print
Published on Thursday, 23 November 2017

Abstract

In epidemiological studies serum levels below 30 nM of 25-OHD(3), the precursor of the active vitamin D metabolite 1,25-(OH)(2)D(3), were consistently associated with incidence of colorectal cancer.

The active vitamin D metabolite possesses antimitotic, prodifferentiating and proapoptotic capacity in vivo and in vitro.

The intestinal autocrine/paracrine vitamin D system, which is the main source of local 1,25-(OH)(2)D(3) plays a critical role in maintaining both mucosal immunity and normal growth of epithelial cells.

It has been hypothesized that the VDR-mediated signaling antagonizing TNF-α and IL-6 receptor-activated pro-inflammatory and proliferative intracellular pathways, may prevent development of IBD and colitis-associated colorectal cancer.

Conversely, any situation that impairs the efficiency of the 1,25-(OH)(2)D(3)/VDR signaling system at the level of the gut mucosa, e.g. vitamin D insufficiency, may increase risk for the development of IBD and colorectal cancer.

Therefore, not only adequate serum levels of the precursor 25-OHD(3) are essential, but also optimal expression of the 1α-hydroxylating enzyme CYP27B1.

The 1,25-(OH)(2)D(3) catabolizing hydroxylase CYP24A1 is increasingly expressed during colon cancer progression, indicating that colonocytes are released from normal growth control by the steroid hormone.

Securing adequate levels of calcitriol by inhibition of catabolism and support of 1α-hydroxylation by calcium, phytoestrogens and folate could be a valid approach to control, at least in part, IBD and CRC pathogenesis.

 

 

About this publication.

 

See also:

- Vitamin D (analogues and/or derivatives) and cancer;

- The Di Bella Method (DBM) in the treatment of prostate cancer: a preliminary retrospective study of 16 patients and a review of the literature;

- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;

- The Di Bella Method Increases by the 30% the survival rate for Pancreas tumors and for this reason should be proposed as first line therapy for this type of cancer;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in advanced non-small-cell lung cancer patients with low performance status;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in chemotherapy-pretreated patients with advanced lung adenocarcinoma and low performance status;

- Observations on the Report of a case of pulmonary adenocarcinoma with lymph node, hepatic and osseus metastasis;

- Evaluation of the safety and efficacy of the first-line treatment with somatostatin combined with melatonin, retinoids, vitamin D3, and low doses of cyclophosphamide in 20 cases of breast cancer: a preliminary report;

- The Di Bella Method (DBM) improved survival, objective response and performance status in a retrospective observational clinical study on 122 cases of breast cancer;

- Complete objective response to biological therapy of plurifocal breast carcinoma.