Dose-dependent proliferative and cytotoxic effects of melatonin on human epidermoid carcinoma and normal skin fibroblast cells

Print
Published on Wednesday, 16 May 2018

Abstract

New in vitro studies have demonstrated that N-acetyl-5-methoxytryptamine (Melatonin) has cytotoxic and apoptotic effects on various cell types although most of the previous investigations document that it is a potent antioxidant. However, the precise molecular mechanism(s) of its effects are not fully elucidated.

In this study, we examined dose-dependent cytotoxic, genotoxic, apoptotic and reactive oxygen species (ROS) generating effects of melatonin in human epidermoid carcinoma cells (A-431) and human normal skin fibroblastic cells (CCD-1079Sk). The cells were incubated with different doses of melatonin (0.031-5 mM) for 24 h.

Cell viability was assessed based on luminometric ATP cell viability assay.

Intracellular ROS was detected using 2,7-dichlorodihydrofluorescein-diacetate (H2DCF-DA) fluorescent probes.

Genotoxicity was evaluated by alkaline single cell gel electrophoresis assay (Comet Assay).

Apoptosis was evaluated by western blotting, DAPI staining, acridine orange/ethidium bromide and Annexin V-FITC/propidium iodide double staining methods Mitochondrial membrane potentials were measured by flow cytometry.

Although lower doses of melatonin (0.031-0.06 mM) increased cell proliferation and decreased ROS generation, higher doses (0.125-5 mM) markedly inhibited the cell viability, induced DNA damage, apoptosis and ROS generation.

Cytotoxic, genotoxic, apoptotic and ROS generating effects were significantly higher in cancer cells than those observed in normal cells.

Melatonin-induced cell death, and ROS generating activity were effectively inhibited by N-acetyl-l-cysteine (NAC)

In conclusion, at low doses, melatonin has proliferative effects on both cancer and normal cells, whereas high concentrations have cytotoxic effects.

Cytotoxic, genotoxic and apoptotic effects at higher doses of melatonin may be due to its ROS production capacity.

 

About this publication.

See also:

- About Melatonin;

- The Di Bella Method (A Fixed Part - Melatonin tablets);

- Congenital fibrosarcoma in complete remission with Somatostatin, Retinoids, Vitamin D3, Vitamin E, Vitamin C, Melatonin, Calcium, Chondroitin sulfate associated with low doses of Cyclophosphamide in a 14-year Follow Up;

- The Di Bella Method (DBM) in the treatment of prostate cancer: a preliminary retrospective study of 16 patients and a review of the literature;

- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;

- The Di Bella Method Increases by the 30% the survival rate for Pancreas tumors and for this reason should be proposed as first line therapy for this type of cancer;

- Cyclophosphamide plus Somatostatin, Bromocriptin, Retinoids, Melatonin and ACTH in the Treatment of Low-grade Non-Hodgkin’s Lymphomas at Advanced Stage: Results of a Phase II Trial;

- Relapse of High-Grade Non-Hodgkin’s Lymphoma After Autologous Stem Cell Transplantation: A Case Successfully Treated With Cyclophosphamide Plus Somatostatin, Bromocriptine, Melatonin, Retinoids, and ACTH;

- Low-grade Non-Hodgkin Lymphoma at Advanced Stage: A Case Successfully Treated With Cyclophosphamide Plus Somatostatin, Bromocriptine, Retinoids, and Melatonin;

- The Di Bella Method (DBM) improved survival, objective response and performance status in a retrospective observational clinical study on 55 cases of Lymphomas;

- Large B-cells Non-Hodgkin's Lymphoma, Stage IV-AE: a Case Report;

- Non-Hodgkin's Lymphoma, Stage III-B-E: a Case Report;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in advanced non-small-cell lung cancer patients with low performance status;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in chemotherapy-pretreated patients with advanced lung adenocarcinoma and low performance status;

- Observations on the Report of a case of pulmonary adenocarcinoma with lymph node, hepatic and osseus metastasis;

- Chronic Lymphocytic Leukemia: Long-Lasting Remission with Combination of Cyclophosphamide, Somatostatin, Bromocriptine, Retinoids, Melatonin, and ACTH;

- Recurrent Glioblastoma Multiforme (grade IV – WHO 2007): a case of complete objective response achieved by means of the concomitant administration of Somatostatin and Octreotide – Retinoids – Vitamin E – Vitamin D3 – Vitamin C – Melatonin – D2 R agonists (Di Bella Method – DBM) associated with Temozolomide;

- Complete objective response, stable for 5 years, with the Di Bella Method, of multiple-metastatic carcinoma of the breast;

- Evaluation of the safety and efficacy of the first-line treatment with somatostatin combined with melatonin, retinoids, vitamin D3, and low doses of cyclophosphamide in 20 cases of breast cancer: a preliminary report;

- The Di Bella Method (DBM) improved survival, objective response and performance status in a retrospective observational clinical study on 122 cases of breast cancer;

- Complete objective response to biological therapy of plurifocal breast carcinoma.