177Lu-DOTATATE molecular radiotherapy for childhood neuroblastoma

Print
Published on Wednesday, 01 August 2018

Abstract

This study tested the principle that (68)Ga-DOTATATE PET/CT may be used to select children with primary refractory or relapsed high-risk neuroblastoma for treatment with (177)Lu-DOTATATE and evaluated whether this is a viable therapeutic option for those children.

METHODS: Between 2008 and 2010, 8 children with relapsed or refractory high-risk neuroblastoma were studied with (68)Ga-DOTATATE PET/CT. The criterion of eligibility for (177)Lu-DOTATATE therapy was uptake on the diagnostic scan equal to or higher than that of the liver.

RESULTS: Of the 8 children imaged, 6 had abnormally high uptake on the (68)Ga-DOTATATE PET/CT scan and proceeded to treatment. Patients received 2 or 3 administrations of (177)Lu-DOTATATE at a median interval of 9 wk and a median administered activity of 7.3 GBq. Of the 6 children treated, 5 had stable disease by the response evaluation criteria in solid tumors (RECIST). Of these 5 children, 2 had an initial metabolic response and reduction in the size of their lesions, and 1 patient had a persistent partial metabolic response and reduction in size of the lesions on CT, although the disease was stable by RECIST. One had progressive disease. Three children had grade 3 and 1 child had grade 4 thrombocytopenia. No significant renal toxicity has been seen.

CONCLUSION: (68)Ga-DOTATATE can be used to image children with neuroblastoma and identify those suitable for molecular radiotherapy with (177)Lu-DOTATATE. We have shown, for what is to our knowledge the first time, that treatment with (177)Lu-DOTATATE is safe and feasible in children with relapsed or primary refractory high-risk neuroblastoma. We plan to evaluate this approach formally in a phase I-II clinical trial.

 

About this publication.

See also:

- Somatostatin in oncology, the overlooked evidences;

- The Di Bella Method (A Fixed Part - Somatostatin, Octreotide, Sandostatin LAR, analogues and/or derivatives);

- The Di Bella Method (A Fixed Part - Cyclophosphamide and/or Hydroxyurea tablets, one or two per day);

- Neuroblastoma: Complete objective response to biological treatment;

- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;

- The Di Bella Method Increases by the 30% the survival rate for Pancreas tumors and for this reason should be proposed as first line therapy for this type of cancer;

- Oesophageal squamocellular carcinoma: a complete and objective response;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in advanced non-small-cell lung cancer patients with low performance status;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in chemotherapy-pretreated patients with advanced lung adenocarcinoma and low performance status;

- Observations on the Report of a case of pulmonary adenocarcinoma with lymph node, hepatic and osseus metastasis;

- The Di Bella Method DBM improved survival objective response and performance status in a retrospective observational clinical study on 23 tumours of the head and neck;

- Recurrent Glioblastoma Multiforme (grade IV – WHO 2007): a case of complete objective response achieved by means of the concomitant administration of Somatostatin and Octreotide – Retinoids – Vitamin E – Vitamin D3 – Vitamin C – Melatonin – D2 R agonists (Di Bella Method – DBM) associated with Temozolomide.