Strain-specific metastatic phenotypes in pheochromocytoma allograft mice

Print
Published on Friday, 12 October 2018

Abstract

Somatostatin receptor-targeting endoradiotherapy offers potential for treating metastatic pheochromocytomas and paragangliomas, an approach likely to benefit from combination radiosensitization therapy.

To provide reliable preclinical in vivo models of metastatic disease, this study characterized the metastatic spread of luciferase-expressing mouse pheochromocytoma (MPC) cells in mouse strains with different immunologic conditions.

Bioluminescence imaging showed that, in contrast to subcutaneous non-metastatic engraftment of luciferase-expressing MPC cells in NMRI-nude mice, intravenous cell injection provided only suboptimal metastatic spread in both NMRI-nude mice and hairless SCID (SHO) mice. Treatment of NMRI-nude mice with anti-Asialo GM1 serum enhanced metastatic spread due to substantial depletion of natural killer (NK) cells. However, reproducible metastatic spread was only observed in NK cell-defective SCID/beige mice and in hairless immunocompetent SKH1 mice bearing disseminated or liver metastases, respectively.

Liquid chromatography tandem mass spectrometry of urine samples showed that subcutaneous and metastasized tumor models exhibit comparable renal monoamine excretion profiles characterized by increasing urinary dopamine, 3-methoxytyramine, norepinephrine and normetanephrine. Metastases-related epinephrine and metanephrine were only detectable in SCID/beige mice.

Positron emission tomography and immunohistochemistry revealed that all metastases maintained somatostatin receptor-specific radiotracer uptake and immunoreactivity, respectively.

In conclusion, we demonstrate that intravenous injection of luciferase-expressing MPC cells into SCID/beige and SKH1 mice provides reproducible and clinically relevant spread of catecholamine-producing and somatostatin receptor-positive metastases.

These standardized preclinical models allow for precise monitoring of disease progression and should facilitate further investigations on theranostic approaches against metastatic pheochromocytomas and paragangliomas.

 

About this publication.

See also:

- Official Web Site: The Di Bella Method;

- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;

- The Di Bella Method (A Fixed Part - Somatostatin, Octreotide, Sandostatin LAR, analogues and/or derivatives);

- The Di Bella Method (A Fixed Part - Cyclophosphamide and/or Hydroxyurea tablets, one or two per day);

- The Di Bella Method DBM improved survival objective response and performance status in a retrospective observational clinical study on 23 tumours of the head and neck;

- Recurrent Glioblastoma Multiforme (grade IV – WHO 2007): a case of complete objective response achieved by means of the concomitant administration of Somatostatin and Octreotide – Retinoids – Vitamin E – Vitamin D3 – Vitamin C – Melatonin – D2 R agonists (Di Bella Method – DBM) associated with Temozolomide;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in advanced non-small-cell lung cancer patients with low performance status;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in chemotherapy-pretreated patients with advanced lung adenocarcinoma and low performance status;

- Observations on the Report of a case of pulmonary adenocarcinoma with lymph node, hepatic and osseus metastasis;

- Neuroblastoma: Complete objective response to biological treatment;

- Oesophageal squamocellular carcinoma: a complete and objective response;

- The Di Bella Method (DBM) in the treatment of prostate cancer: a preliminary retrospective study of 16 patients and a review of the literature.