Melatonin--a pleiotropic, orchestrating regulator molecule

Print
Published on Monday, 22 October 2018

Abstract

Melatonin, the neurohormone of the pineal gland, is also produced by various other tissues and cells. It acts via G protein-coupled receptors expressed in various areas of the central nervous system and in peripheral tissues. Parallel signaling mechanisms lead to cell-specific control and recruitment of downstream factors, including various kinases, transcription factors and ion channels.

Additional actions via nuclear receptors and other binding sites are likely. By virtue of high receptor density in the circadian pacemaker, melatonin is involved in the phasing of circadian rhythms and sleep promotion.

Additionally, it exerts effects on peripheral oscillators, including phase coupling of parallel cellular clocks based on alternate use of core oscillator proteins.

Direct central and peripheral actions concern the up- or downregulation of various proteins, among which inducible and neuronal NO synthases seem to be of particular importance for antagonizing inflammation and excitotoxicity. The methoxyindole is also synthesized in several peripheral tissues, so that the total content of tissue melatonin exceeds by far the amounts in the circulation.

Emerging fields in melatonin research concern receptor polymorphism in relation to various diseases, the control of sleep, the metabolic syndrome, weight control, diabetes type 2 and insulin resistance, and mitochondrial effects.

Control of electron flux, prevention of bottlenecks in the respiratory chain and electron leakage contribute to the avoidance of damage by free radicals and seem to be important in neuroprotection, inflammatory diseases and, presumably, aging. Newly discovered influences on sirtuins and downstream factors indicate that melatonin has a role in mitochondrial biogenesis.

 

About this publication.

See also:

- Official Web Site: The Di Bella Method;

- About Melatonin - In vitro, review and in vivo publications;

- The Di Bella Method (A Fixed Part - Melatonin tablets. From 30-40mg/day up to 200mg/day orally in patients with advanced stage of cancer disease and/or patients without respond to traditional treatments);

- Melatonin with adenosine solubilized in water and stabilized with glycine for oncological treatment - technical preparation, effectivity and clinical findings;

- The Di Bella Method (A Fixed Part - Calcium, 2 grams per day, orally);

- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;

- The Di Bella Method (A Fixed Part - Somatostatin, Octreotide, Sandostatin LAR, analogues and/or derivatives);

- The Di Bella Method (A Fixed Part - Bromocriptine/Cabergoline);

- All-Trans-Retinoic Acid (ATRA - analogues and/or derivatives) - In vitro, review and in vivo publications;

- The Di Bella Method (A Fixed Part - All-Trans Retinoic Acid, Analogues and/or Derivatives - Approximately 60mg per day orally: 40mg per day Beta-Carotene/β-Carotene, 10mg per day ATRA and 10mg per day Axerophthol palmitate);

- Solution of retinoids in vitamin E in the Di Bella Method biological multitherapy;

- The Di Bella Method (A Fixed Part - Alpha tocopheryl acetate/Vitamin E, approximately 20 grams per day orally);

- The Di Bella Method (A Fixed Part - Cyclophosphamide and/or Hydroxyurea tablets, one or two per day);

- The Synergism of Somatostatin, Melatonin, Vitamins Prolactin and Estrogen Inhibitors Increased Survival, Objective Response and Performance Status In 297 Cases of Breast Cancer;

- Complete objective response, stable for 5 years, with the Di Bella Method, of multiple-metastatic carcinoma of the breast;

- Evaluation of the safety and efficacy of the first-line treatment with somatostatin combined with melatonin, retinoids, vitamin D3, and low doses of cyclophosphamide in 20 cases of breast cancer: a preliminary report;

- The Di Bella Method (DBM) improved survival, objective response and performance status in a retrospective observational clinical study on 122 cases of breast cancer;

- Complete objective response to biological therapy of plurifocal breast carcinoma;

- Recurrent Glioblastoma Multiforme (grade IV – WHO 2007): a case of complete objective response achieved by means of the concomitant administration of Somatostatin and Octreotide – Retinoids – Vitamin E – Vitamin D3 – Vitamin C – Melatonin – D2 R agonists (Di Bella Method – DBM) associated with Temozolomide;

- The Di Bella Method DBM improved survival objective response and performance status in a retrospective observational clinical study on 23 tumours of the head and neck;

- Chronic Lymphocytic Leukemia: Long-Lasting Remission with Combination of Cyclophosphamide, Somatostatin, Bromocriptine, Retinoids, Melatonin, and ACTH;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in advanced non-small-cell lung cancer patients with low performance status;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in chemotherapy-pretreated patients with advanced lung adenocarcinoma and low performance status;

- Observations on the Report of a case of pulmonary adenocarcinoma with lymph node, hepatic and osseus metastasis;

- Neuroblastoma: Complete objective response to biological treatment;

- Oesophageal squamocellular carcinoma: a complete and objective response;

- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;

- The Di Bella Method Increases by the 30% the survival rate for Pancreas tumors and for this reason should be proposed as first line therapy for this type of cancer;

- The Di Bella Method (DBM) in the treatment of prostate cancer: a preliminary retrospective study of 16 patients and a review of the literature.