Expression and selective activation of somatostatin receptor subtypes induces cell cycle arrest in cancer cells
Abstract
Somatostatin receptors (SSTRs) are G-protein-coupled plasma membrane receptors that have been determined to be expressed in normal and cancer tissues.
Activation of SSTRs frequently results in inhibition of cell proliferation and therefore somatostatin analogues (SSAs) have been used in cancer treatment. However, the variable outcomes of SSA treatment were considered to be the consequences of loss-of-expression of SSTRs and/or subtype-specific effects.
In the present study, the patterns of SSTR expression in 160 breast cancer tissues were investigated, and the mechanisms of SSTR activation and the influence on cell proliferation were further characterized. The expression levels of SSTR1-5 were determined using immunohistology.
Hemagglutinin-SSTR1 and MYC-SSTR4 were transiently overexpressed in MDA-MB-435S cells, and the potential receptor dimerization was determined using immunofluorescence and co-immunoprecipitation. The influence of SSTR1 and SSTR4 expression/activation on cell proliferation was monitored using flow cytometry.
The results demonstrated that all five SSTR subtypes were expressed at variable levels in tumor tissues, with the highest positive expression instance being determined for SSTR1 and SSTR4, with positive expression levels in 90.0 and 71.3% of tumor tissues, respectively.
Immunofluorescence and co-immunoprecipitation revealed SSTR1/SSTR4 heterodimerization, which was increased in response to receptor activation using the subtype-specific SSA L-803087. The translocation of SSTR1/SSTR4 dimers into the cytoplasm upon receptor activation was also observed.
Additionally, it was identified using flow cytometry that co-expression and activation of SSTR1 and SSTR4 in MDA-MB-435S cells resulted in a decreased proportion of S-phase cells.
The results of the present study revealed that SSTR1 and SSTR4 are the most frequently expressed SSTR subtypes in breast cancer, and that the cell cycle arrest was mediated by SSTR1/SSTR4 dimerization/activation.
See also:
- Official Web Site: The Di Bella Method;
- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;
- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);
- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes (from Di Bella's Foundation);
- Publication, 2020 Sep: Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives (from Di Bella's Foundation);
- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);
- Prolactin inhibitors in oncology - In vitro, review and in vivo publications;
- Complete objective response to biological therapy of plurifocal breast carcinoma;
- Neuroblastoma: Complete objective response to biological treatment;
- Oesophageal squamocellular carcinoma: a complete and objective response;
- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;






