Histone deacetylase 9 downregulation decreases tumor growth and promotes apoptosis in non-small cell lung cancer after melatonin treatment

Print
Published on Tuesday, 04 June 2019

Abstract

Histone deacetylase 9 functions as an oncogene in a variety of cancers, but its role on non-small cell lung cancer (NSCLC) has not been reported.

Melatonin was proven to possess anticancer actions, whereas its effect on NSCLC and underlying mechanisms remains poorly understood.

In this study, 337 patients with complete clinicopathologic characteristics who underwent NSCLC surgery were recruited for the study..

We found that NSCLC patients with high HDAC9 expression were correlated with worse overall survival and poor prognosis. HDAC9 knockdown significantly reduced NSCLC cell growth and induced apoptosis both in vivo and in vitro.

Melatonin application also markedly inhibited cell proliferation, metastasis, and invasion and promoted apoptosis in NSCLC cells.

Moreover, RNA-seq, real-time quantitative polymerase chain reaction, and western blot analyses showed that melatonin treatment decreased the HDAC9 level in NSCLC cells. A mechanistic study revealed that HDAC9 knockdown further enhanced the anticancer activities of melatonin treatment, whereas HDAC9 overexpression partially reversed the melatonin's anticancer effects.

Additionally, the in vivo study found melatonin exerted anti-proliferative and pro-apoptotic effects on xenograft tumors which were also strengthened by HDAC9 knockdown.

These results indicated that HDAC9 downregulation mediated the anti-NSCLC actions of melatonin, and targeting HDAC9 may be the novel therapeutic strategy for NSCLC.

 

About this publication.

See also:

- Official Web Site: The Di Bella Method;

- The Di Bella Method (A Fixed Part - Cyclophosphamide 50mg tablets and/or Hydroxyurea 500mg tablets, one or two per day);

- The Di Bella Method (A Fixed Part - Melatonin tablets. From 30-40mg/day up to 200mg/day orally in patients with advanced stage of cancer disease and/or patients without respond to traditional treatments);

- Melatonin with adenosine solubilized in water and stabilized with glycine for oncological treatment - technical preparation, effectivity and clinical findings;

- About Melatonin - In vitro, review and in vivo publications;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in advanced non-small-cell lung cancer patients with low performance status;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in chemotherapy-pretreated patients with advanced lung adenocarcinoma and low performance status;

- Observations on the Report of a case of pulmonary adenocarcinoma with lymph node, hepatic and osseus metastasis;

- Recurrent Glioblastoma Multiforme (grade IV – WHO 2007): a case of complete objective response achieved by means of the concomitant administration of Somatostatin and Octreotide – Retinoids – Vitamin E – Vitamin D3 – Vitamin C – Melatonin – D2 R agonists (Di Bella Method – DBM) associated with Temozolomide;

- The Di Bella Method DBM improved survival objective response and performance status in a retrospective observational clinical study on 23 tumours of the head and neck;

- Neuroblastoma: Complete objective response to biological treatment;

- Oesophageal squamocellular carcinoma: a complete and objective response;

- The Synergism of Somatostatin, Melatonin, Vitamins Prolactin and Estrogen Inhibitors Increased Survival, Objective Response and Performance Status In 297 Cases of Breast Cancer;

- Complete objective response, stable for 5 years, with the Di Bella Method, of multiple-metastatic carcinoma of the breast;

- Evaluation of the safety and efficacy of the first-line treatment with somatostatin combined with melatonin, retinoids, vitamin D3, and low doses of cyclophosphamide in 20 cases of breast cancer: a preliminary report;

- The Di Bella Method (DBM) improved survival, objective response and performance status in a retrospective observational clinical study on 122 cases of breast cancer;

- Complete objective response to biological therapy of plurifocal breast carcinoma.