The expanding role of somatostatin analogs in gastroenteropancreatic and lung neuroendocrine tumors

Print
Published on Thursday, 15 October 2020

Abstract

Somatostatin analogs (SSAs) were initially developed as antisecretory agents used for the control of hormonal syndromes associated with neuroendocrine tumors (NETs).

In recent years, accumulating evidence has also supported their role as antiproliferative agents in well or moderately differentiated NETs.

The phase III PROMID trial demonstrated that octreotide long-acting repeatable (LAR) can significantly prolong time to progression among patients with metastatic midgut NETs.

More recently, the randomized CLARINET trial reported a significant improvement in progression-free survival in a heterogeneous population of patients with gastroenteropancreatic (GEP)-NETs treated with depot lanreotide.

Octreotide and lanreotide target somatostatin receptor subtypes in a similar fashion, and appear to be clinically interchangeable; however, comparative noninferiority trials have not been performed.

Further studies are needed to evaluate the efficacy of novel SSAs such as pasireotide in the refractory setting, and the role of high-dose SSAs for symptom and tumor control.

 

About this publication.

See also:

- Official Web Site: The Di Bella Method;


 


- The Di Bella Method (A Fixed Part - Somatostatin, Octreotide, Sandostatin LAR, analogues and/or derivatives);

- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;

- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);

- Publication, 2018 Sep: The over-expression of GH/GHR in tumour tissues with respect to healthy ones confirms its oncogenic role and the consequent oncosuppressor role of its physiological inhibitor, somatostatin: a review of the literature (from Di Bella's Foundation);

- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);

- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);

- Publication, 2019 Sep: Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes (from Di Bella's Foundation);

- Publication, 2020 Sep: Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives (from Di Bella's Foundation);

- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);

- The Di Bella Method (A Fixed Part - Cyclophosphamide 50mg tablets and/or Hydroxyurea 500mg tablets, one or two per day);

- The Di Bella Method (A Fixed Part - Calcium, 2 grams per day, orally);


 


- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in advanced non-small-cell lung cancer patients with low performance status;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in chemotherapy-pretreated patients with advanced lung adenocarcinoma and low performance status;

- Observations on the Report of a case of pulmonary adenocarcinoma with lymph node, hepatic and osseus metastasis;

- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;

- The Di Bella Method Increases by the 30% the survival rate for Pancreas tumors and for this reason should be proposed as first line therapy for this type of cancer;

- Recurrent Glioblastoma Multiforme (grade IV – WHO 2007): a case of complete objective response achieved by means of the concomitant administration of Somatostatin and Octreotide – Retinoids – Vitamin E – Vitamin D3 – Vitamin C – Melatonin – D2 R agonists (Di Bella Method – DBM) associated with Temozolomide;

- The Di Bella Method DBM improved survival objective response and performance status in a retrospective observational clinical study on 23 tumours of the head and neck;

- Neuroblastoma: Complete objective response to biological treatment;

- Oesophageal squamocellular carcinoma: a complete and objective response.