Vitamin D as a Novel Regulator of Tumor Metabolism: Insights on Potential Mechanisms and Implications for Anti-Cancer Therapy
Abstract
1,25-dihydroxyvitamin D₃ [1,25(OH)₂D₃], the bioactive form of vitamin D, has been shown to possess significant anti-tumor potential.
While most studies so far have focused on the ability of this molecule to influence the proliferation and apoptosis of cancer cells, more recent data indicate that 1,25(OH)₂D₃ also impacts energy utilization in tumor cells.
In this article, we summarize and review the evidence that demonstrates the targeting of metabolic aberrations in cancers by 1,25(OH)₂D₃, and highlight potential mechanisms through which these effects may be executed.
We shed light on the ability of this molecule to regulate metabolism-related tumor suppressors and oncogenes, energy- and nutrient-sensing pathways, as well as cell death and survival mechanisms such as autophagy.
See also:
- Official Web Site: The Di Bella Method;
- The Di Bella Method (A Fixed Part - Dihydrotachysterol, Alfacalcidol, synthetic Vitamin D3);
- Vitamin D (analogues and/or derivatives) and cancer - In vitro, review and in vivo publications;
- The Di Bella Method (A Fixed Part - Calcium, 2 grams per day, orally);
- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;
- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);
- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes (from Di Bella's Foundation);
- Publication, 2020 Sep: Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives (from Di Bella's Foundation);
- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);
- Complete objective response to biological therapy of plurifocal breast carcinoma;
- Oesophageal squamocellular carcinoma: a complete and objective response;
- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;
- Neuroblastoma: Complete objective response to biological treatment.






