IKKα inibition by a glucosamine derivative enhances Maspin expression in osteosarcoma cell line
Abstract
Chronic inflammation has been associated to cancer development by the alteration of several inflammatory pathways, such as Nuclear Factor-κB pathway. In particular, IκB kinase α (IKKα), one of two catalytic subunit of IKK complex, has been described to be associated to cancer progression and metastasis in a number of cancers.
The molecular mechanism by which IKKα affects cancer progression is not yet completely clarified, anyway an association between IKKα and the expression of Maspin (Mammary Serine Protease Inhibitor or SerpinB5), a tumor suppressor protein, has been described.
IKKα shuttles between cytoplasm and nucleus, and when is localized into the nuclei, IKKα regulates the expression of several genes, among them Maspin gene, whose expression is repressed by high amount of nuclear IKKα.
Considering that high levels of Maspin have been associated with reduced metastatic progression, it could be hypothesized that the repression of IKKα nuclear translocation could be associated with the repression of metastatic phenotype.
The present study is aimed to explore the ability of a glucosamine derivative, 2-(N-Carbobenzyloxy)l-phenylalanylamido-2-deoxy-β-d-glucose (NCPA), synthesized in our laboratory, to stimulate the production of Maspin in an osteosarcoma cell line, 143B. Immunofluorescence and Western blotting experiments showed that NCPA is able to inhibit IKKα nuclear translocation, and to stimulate Maspin production.
Moreover, in association with stimulation of Maspin production we found the decrease of β1 Integrin expression, the down-regulation of metalloproteases MMP-9 and MMP-13 production and cell migration inhibition.
Taking in account that β1 Integrin and MMP-9 and -13 have been correlated with the invasiveness of osteosarcoma, considering that NCPA affects the invasiveness of 143B cell line, we suggest that this molecule could affect the osteosarcoma metastatic ability.
See also:
- Official Web Site: The Di Bella Method;
- The Di Bella Method (A Variable Part - Chondroitin sulfate, up to 3-4 grams per day, orally);
- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;
- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);
- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes (from Di Bella's Foundation);
- Publication, 2020 Sep: Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives (from Di Bella's Foundation);
- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);
- Complete objective response to biological therapy of plurifocal breast carcinoma;
- Neuroblastoma: Complete objective response to biological treatment;
- Oesophageal squamocellular carcinoma: a complete and objective response;
- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;






