SSTR2 promoter hypermethylation is associated with the risk and progression of laryngeal squamous cell carcinoma in males

Print
Published on Friday, 06 January 2023

Abstract

Background: Somatostatin receptor 2 (SSTR2) encodes somatostatin receptor that can inhibit the cell proliferation of solid tumors. Promoter hypermethylation is likely to silence the expression of SSTR2. The goal of our study was to investigate the association between SSTR2 promoter methylation and the risk and progression of laryngeal carcinoma.

Methods: In the current study, tumor tissues and their adjacent non-tumor tissues were collected from a total of 87 laryngeal squamous cell carcinoma (LSCC) male patients. DNA methylation levels of nine SSTR2 promoter CpGs were measured using the bisulphite pyrosequencing technology.

Results: Our results revealed that there was a significantly increased SSTR2 promoter methylation in LSCC tissues than in their adjacent non-cancerous tissues (adjusted P = 0.003). Breakdown analysis by age indicated that the significant association was mainly contributed by patients younger than 60 (adjusted P = 0.039) but not in patients older than 60. Meanwhile, the significant association was observed in the patients with moderately (adjusted P = 0.037) and well differentiated tissues (adjusted P = 0.028), as well as the patients with histological stage IV (adjusted P = 0.031). Multivariate Cox analysis suggested that SSTR2 promoter methylation was an independent prognostic factor of LSCC (HR = 1.127, 95 % CI = 1.034-1.228).

Conclusions: In conclusion, SSTR2 promoter hypermethylation might be associated with the risk and progression of LSCC in males.

 

About this publication.

See also:

- Official Web Site: The Di Bella Method;


 


- The Di Bella Method (A Fixed Part - Somatostatin, Octreotide, Sandostatin LAR, analogues and/or derivatives);

- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;

- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);

- Publication, 2018 Sep: The over-expression of GH/GHR in tumour tissues with respect to healthy ones confirms its oncogenic role and the consequent oncosuppressor role of its physiological inhibitor, somatostatin: a review of the literature (from Di Bella's Foundation);

- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);

- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);

- Publication, 2019 Sep: Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes (from Di Bella's Foundation);

- Publication, 2020 Sep: Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives (from Di Bella's Foundation);

- The Di Bella Method (A Fixed Part - Cyclophosphamide 50mg tablets and/or Hydroxyurea 500mg tablets, one or two per day);

- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);


 


- The Di Bella Method DBM improved survival objective response and performance status in a retrospective observational clinical study on 23 tumours of the head and neck;

- Chronic Lymphocytic Leukemia: Long-Lasting Remission with Combination of Cyclophosphamide, Somatostatin, Bromocriptine, Retinoids, Melatonin, and ACTH;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in advanced non-small-cell lung cancer patients with low performance status;

- Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in chemotherapy-pretreated patients with advanced lung adenocarcinoma and low performance status;

- Observations on the Report of a case of pulmonary adenocarcinoma with lymph node, hepatic and osseus metastasis;

- Neuroblastoma: Complete objective response to biological treatment;

- Oesophageal squamocellular carcinoma: a complete and objective response;

- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;

- The Di Bella Method Increases by the 30% the survival rate for Pancreas tumors and for this reason should be proposed as first line therapy for this type of cancer;

- The Di Bella Method (DBM) in the treatment of prostate cancer: a preliminary retrospective study of 16 patients and a review of the literature;

- The Synergism of Somatostatin, Melatonin, Vitamins Prolactin and Estrogen Inhibitors Increased Survival, Objective Response and Performance Status In 297 Cases of Breast Cancer;

- Complete objective response, stable for 5 years, with the Di Bella Method, of multiple-metastatic carcinoma of the breast;

- Evaluation of the safety and efficacy of the first-line treatment with somatostatin combined with melatonin, retinoids, vitamin D3, and low doses of cyclophosphamide in 20 cases of breast cancer: a preliminary report;

- The Di Bella Method (DBM) improved survival, objective response and performance status in a retrospective observational clinical study on 122 cases of breast cancer;

- Complete objective response to biological therapy of plurifocal breast carcinoma;

- A retrospective observational study on cases of anaplastic brain tumors treated with the Di Bella Method: A rationale and effectiveness;

- Recurrent Glioblastoma Multiforme (grade IV – WHO 2007): a case of complete objective response achieved by means of the concomitant administration of Somatostatin and Octreotide – Retinoids – Vitamin E – Vitamin D3 – Vitamin C – Melatonin – D2 R agonists (Di Bella Method – DBM) associated with Temozolomide.