Dopamine Receptors in Breast Cancer: Prevalence, Signaling, and Therapeutic Applications
Abstract
Breast cancer (BC) is the most common malignancy among women, with over one million cases occurring annually worldwide.
Although therapies against estrogen receptors and HER2 have improved response rate and survival, patients with advanced disease, who are resistant to anti-hormonal therapy and/or to chemotherapy, have limited treatment options for reducing morbidity and mortality. These limitations provide major incentives for developing new, effective, and personalized therapeutic interventions.
This review presents evidence on the involvement of dopamine (DA) and its type 1 receptors (D1R) in BC. DA is produced in multiple peripheral organs and is present in the systemic circulation in significant amounts. D1R is overexpressed in ~ 30% of BC cases and is associated with advanced disease and shortened patient survival.
Activation of D1R, which signals via the cGMP/PKG pathway, results in apoptosis, inhibition of cell invasion, and increased chemosensitivity in multiple BC cell lines. Fenoldopam, a peripheral D1R agonist that does not penetrate the brain, dramatically suppressed tumor growth in mouse models with D1R-expressing BC xenografts. It is proposed that D1R should serve as a novel diagnostic/prognostic factor through the use of currently available D1R detection methods. Fenoldopam, which is FDA-approved to treat renal hypertension, could be repurposed as an effective therapeutic agent for patients with D1R-expressing tumors.
Several drugs that interfere with the cGMP/PKG pathway and are approved for treating other diseases should also be considered as potential treatments for BC.
See also:
- Official Web Site: The Di Bella Method;
- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);
- Prolactin inhibitors in oncology - In vitro, review and in vivo publications;
- The Di Bella Method (A Fixed Part - Calcium, 2 grams per day, orally);
- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;
- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);
- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes (from Di Bella's Foundation);
- Publication, 2020 Sep: Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives (from Di Bella's Foundation);
- Complete objective response to biological therapy of plurifocal breast carcinoma;
- Oesophageal squamocellular carcinoma: a complete and objective response;
- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;
- Neuroblastoma: Complete objective response to biological treatment.






