Modulation of estrogen receptor mRNA expression by melatonin in MCF-7 human breast cancer cells
Abstract
Melatonin, the hormonal product of the pineal gland, has been shown to inhibit the development of mammary tumors in vivo and the proliferation of MCF-7 human breast cancer cells in vitro by mechanisms not yet identified.
However, previous studies have demonstrated that melatonin significantly decreased estrogen-binding activity and the expression of immunoreactive estrogen receptor (ER) in MCF-7 breast cancer cells.
To determine the mechanism(s) by which melatonin regulates ER expression in MCF-7 cells, the relationship between the level of steady state ER mRNA and the rate of ER gene transcription were examined in response to melatonin.
Physiological concentrations of melatonin decreased steady state levels of ER mRNA expression in a dose- and time-specific manner.
This decrease was not dependent upon the presence of estrogen since similar decreases in steady state ER mRNA levels were seen in MCF-7 cells cultured in both complete and estrogen-depleted media.
The decreased expression of ER mRNA in response to melatonin appears to be directly related to the suppression of transcription of the ER gene.
This regulation is independent of the synthesis of new proteins, as cycloheximide was unable to block the melatonin-induced decrease of steady-state ER mRNA levels.
The down-regulation of ER by melatonin appears to not be mediated via a direct interaction with the ER and subsequent feedback on its own expression, since melatonin treatment did not alter the transcriptional regulatory ability of the fully activated wild type ER or a constitutively active hormone-binding domain-deleted ER variant.
In addition, the stability of the ER transcript was unaffected by melatonin.
Thus, it appears that the antiproliferative actions of this pineal indoleamine are mediated, at least in part, through the suppression of the transcription of the ER gene in MCF-7 human breast cancer cells.
See also:
- Official Web Site: The Di Bella Method;
- Melatonin use in cancer patients have started in 1974, when melatonin prepared according to Prof. Di Bella’s formulation [...]. For 11 days was administered to the patient, admitted to the general medical ward at the Maggiore-Pizzardi Hospital in Bologna, very slowly (over approx. 8 hours) and intravenously administered 1000 mg of melatonin for 11 days. During the course of each day, the patient was intravenously administered 4 saline drips of 500 ml, each containing ten 25 mg bottles of freeze-dried melatonin, lasting 2 hours, totaling 1000 mg per day. No other drug of any kind was administered in order to ascertain the effect of the MLT without interference [...]. From Melatonin with adenosine solubilized in water and stabilized with glycine for oncological treatment - technical preparation, effectivity and clinical findings;
- About Melatonin - In vitro, review and in vivo publications;
- Publication: Melmethoatonin anticancer effects: Review (from Di Bella's Foundation);
- Publication: Key aspects of melatonin physiology: 30 years of research (from Di Bella's Foundation);
- The Di Bella Method (A Fixed Part - Dihydrotachysterol, Alfacalcidol, synthetic Vitamin D3);
- Vitamin D (analogues and/or derivatives) and cancer - In vitro, review and in vivo publications;
- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;
- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);
- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes (from Di Bella's Foundation);
- Publication, 2020 Sep: Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives (from Di Bella's Foundation);
- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);
- Complete objective response to biological therapy of plurifocal breast carcinoma;
- Pleural Mesothelioma: clinical records on 11 patients treated with Di Bella's Method;
- Malignant pleural mesothelioma, stage T3-T4. Consideration of a case study;
- Neuroblastoma: Complete objective response to biological treatment;
- Large B-cells Non-Hodgkin's Lymphoma, Stage IV-AE: a Case Report;
- Non-Hodgkin's Lymphoma, Stage III-B-E: a Case Report;
- Oesophageal squamocellular carcinoma: a complete and objective response;
- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;






