Long term increased expression of the short form 1b prolactin receptor in PC-3 human prostate cancer cells decreases cell growth and migration, and causes multiple changes in gene expression consistent with reduced invasive capacity
Abstract
Background: We have shown that treatment of human prostate cancer cells with the selective prolactin (PRL) receptor modulator, S179D PRL, inhibits growth in vitro, and the initiation and growth of xenografts in vivo. S179D PRL treatment also upregulates expression of the short form 1b (SF1b) PRL receptor, activation of which upregulates expression of the cell cycle-regulating protein, p21.
Methods: We examined the consequences of long term increased expression and activation of SF1b, at levels comparable to those resulting from treatment with S179D PRL, by creating PC-3-derived stable cell lines expressing a constitutively active form of SF1b, DeltaS2 SF1b.
Results: Increased expression of DeltaS2 SF1b decreased growth and migration of the cells. This was accompanied by an increase in cell-matrix interactions, and cell-cell aggregation when cells were plated on basement membrane components. Real-time PCR evaluated the expression of genes related to invasive capacity. Of particular interest was decreased expression of the protease, urokinase-type plaminogen activator, and its receptor, uPAR, and increased expression of its inhibitors, PAI-1 and 2. Also decreased in cells with increased expression of DeltaS2 SF1b was expression of basic fibroblast growth factor and vascular endothelial growth factor.
Conclusion: We conclude that at least part of the beneficial effects of S179D PRL is the result of increased expression of SF1b, and that the effects of increased expression and activation of SF1b continue to be of potential benefit in the long term.
The Di Bella's Method: Use of Cabergoline and/or Bromocriptine, Retinoic Acid - Beta-Carotene and Axerophthol palmitate - Hormone therapy (e.g. Enantone, Decapeptyl and analogues), pseudo-Metronomic Chemotherapy Cyclophosphamide and/or Hydroxyurea (together with others chemical compounds) in Prostate Cancer:
See also:
- Official Web Site: The Di Bella Method;
- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);
- Prolactin inhibitors in oncology - In vitro, review and in vivo publications;
- The Di Bella Method (A Fixed Part - Dihydrotachysterol, Alfacalcidol, synthetic Vitamin D3);
- Vitamin D (analogues and/or derivatives) and cancer - In vitro, review and in vivo publications;
- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;
- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);
- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes (from Di Bella's Foundation);
- Publication, 2020 Sep: Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives (from Di Bella's Foundation);
The Di Bella's Method: Use of Cabergoline and/or Bromocriptine associated with pseudo-Metronomic Chemotherapy Cyclophosphamide and/or Hydroxyurea - together with others chemical compounds - in several Oncological Pathologies:
- Complete objective response to biological therapy of plurifocal breast carcinoma;
- Pleural Mesothelioma: clinical records on 11 patients treated with Di Bella's Method;
- Malignant pleural mesothelioma, stage T3-T4. Consideration of a case study;
- Neuroblastoma: Complete objective response to biological treatment;
- Large B-cells Non-Hodgkin's Lymphoma, Stage IV-AE: a Case Report;
- Non-Hodgkin's Lymphoma, Stage III-B-E: a Case Report;
- Oesophageal squamocellular carcinoma: a complete and objective response;
- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;






