Clinical uses of melatonin: evaluation of human trials on cancer treatment
Abstract
Melatonin is a molecule with numerous properties, which are applicable to the treatment of different types of cancers.
Experimental in vitro and in vivo studies conducted with human cancer cells or animal models of carcinogenesis, have shown that melatonin enhances apoptosis and inhibits cell proliferation of several human cancer cells, reduces tumor growth rate and its metastases, reduces the side effects of chemotherapy and radiotherapy, decreases the resistance to standard cancer treatments, and potentiates the therapeutic effects of other conventional therapies.
These satisfactory results obtained from “bench” need to be studied in clinical trials to verify whether they are applicable to “bedside”. In this article we review the clinical trials carried out in the last 25 years which are focused on the therapeutic use of melatonin in cancer treatment.
We conclude that melatonin is an effective adjuvant drug to practically any conventional cancer therapy since it is capable of improving the quality of life of patients, by normalizing sleep and alleviating general symptoms associated with tumor disease and treatment such as pain, asthenia, anorexia, etc.
In the particular case of hormone-dependent breast cancer, melatonin's antiestrogenic properties make this indoleamine ideally suited for use in association with other synthetic anti-estrogen agents, as melatonin increases their efficacy while reducing their undesirable effects.
Furthermore, melatonin could be an appropriate co-treatment for preventive treatment of breast cancer in people with elevated risk for this kind of neoplasia.
NOTE: This publication cites DBM (The Di Bella Method) in Todisco's et al. publications:
-
Ref #93: Todisco M, Casaccia P, Rossi N. - Cyclophosphamide plus somatostatin, bromocriptin, retinoids, melatonin and ACTH in the treatment of low-grade non-Hodgkin’s lymphomas at advanced stage: results of a phase II trial. Cancer Biother Radiopharm 2001;16:171–7;
-
Ref #94: Mauro Todisco - Relapse of high-grade non-Hodgkin’s lymphoma after autologous stem cell transplantation: a case successfully treated with cyclophosphamide plus somatostatin, bromocriptine, melatonin, retinoids, and ACTH. Am J Ther. Nov-Dec 2006;13(6):556-7;
-
Ref #95: Mauro Todisco - Low-grade non-Hodgkin lymphoma at advanced stage: a case successfully treated with cyclophosphamide plus somatostatin, bromocriptine, retinoids, and melatonin. Am J Ther. Jan-Feb 2007;14(1):113-5;
- Ref #96: Mauro Todisco - Chronic lymphocytic leukemia: long-lasting remission with combination of cyclophosphamide, somatostatin, bromocriptine, retinoids, melatonin, and ACTH. Cancer Biother Radiopharm. 2009 Jun;24(3):353-5. doi: 10.1089/cbr.2008.0570;
as well as Norsa's et al. publications:
-
Ref #103: Achille Norsa, Vincenzo Martino - Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in advanced non-small-cell lung cancer patients with low performance status. Cancer Biother Radiopharm. 2006 Feb;21(1):68-73. doi: 10.1089/cbr.2006.21.68.
- Ref #104: Achille Norsa, Vincenzo Martino - Somatostatin, retinoids, melatonin, vitamin D, bromocriptine, and cyclophosphamide in chemotherapy-pretreated patients with advanced lung adenocarcinoma and low performance status. Cancer Biother Radiopharm. 2007 Feb;22(1):50-5. doi: 10.1089/cbr.2006.365;
See also:
- Official Web Site: The Di Bella Method;
- About Melatonin - In vitro, review and in vivo publications;
- Publication: Melatonin anticancer effects: Review (from Di Bella's Foundation);
- Publication: Key aspects of melatonin physiology: 30 years of research (from Di Bella's Foundation);
- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;
- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);
- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);
- The Di Bella Method (A Fixed Part - Dihydrotachysterol, Alfacalcidol, synthetic Vitamin D3);
- Vitamin D (analogues and/or derivatives) and cancer - In vitro, review and in vivo publications;
- Solution of retinoids in vitamin E in the Di Bella Method biological multitherapy;
- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);
- Complete objective response to biological therapy of plurifocal breast carcinoma;
- Pleural Mesothelioma: clinical records on 11 patients treated with Di Bella's Method;
- Malignant pleural mesothelioma, stage T3-T4. Consideration of a case study;
- Neuroblastoma: Complete objective response to biological treatment;
- Large B-cells Non-Hodgkin's Lymphoma, Stage IV-AE: a Case Report;
- Non-Hodgkin's Lymphoma, Stage III-B-E: a Case Report;
- Oesophageal squamocellular carcinoma: a complete and objective response;
- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;






