Melatonin decreases androgen-sensitive prostate cancer growth by suppressing SENP1 expression
Abstract
Background: Melatonin is a hormone naturally produced by the pineal gland in the brain. In addition to modulating circadian rhythms, it has pleiotropic biological effects including antioxidant, immunomodulatory, and anti-cancer effects. Herein, we report that melatonin has the ability to decrease the growth and metastasis of androgen-dependent prostate cancer.
Methods: To evaluate the anti-cancer effect of melatonin on androgen-sensitive prostate cancer in vitro or in vivo, the effects of cell proliferation, apoptosis, migration and invasion were analyzed by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation, flow cytometry, Transwell assay, and immunohistochemistry (IHC), respectively. Next, the interaction between androgen receptor (AR) and SUMO specific protease 1 (SENP1) was detected by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blotting, and confirmed by luciferase reporter assay. Furthermore, the Small Ubiquitin-like Modifier (SUMO) proteins are a group of small proteins that are covalently attached to and detached from other proteins in cells to modify their function. (SUMOylation) of histone deacetylases 1 (HDAC1) was measured by proximity ligation assay (PLA).
Results: The treatment of melatonin cripples the transcriptional activity of AR, which is essential for the growth of the androgen-dependent prostate cancer cell, LNCaP. The lower activity of AR was dependent on melatonin induced SUMOylation of HDAC1, which has been established as a key factor for the transcriptional activity of AR. Mechanistically, the effect of melatonin on AR was due to the decreased SENP1 protein level and the subsequent increased HDAC1 SUMOylation level. The overexpression of SENP1 abrogated the anti-cancer ability of melatonin on LNCaP cells.
Conclusions: These findings indicate that melatonin is a suppressor of androgen-dependent prostate cancer tumorigenesis.
See also:
- Official Web Site: The Di Bella Method;
- Melatonin use in cancer patients have started in 1974, when melatonin prepared according to Prof. Di Bella’s formulation [...]. For 11 days was administered to the patient, admitted to the general medical ward at the Maggiore-Pizzardi Hospital in Bologna, very slowly (over approx. 8 hours) and intravenously administered 1000 mg of melatonin for 11 days. During the course of each day, the patient was intravenously administered 4 saline drips of 500 ml, each containing ten 25 mg bottles of freeze-dried melatonin, lasting 2 hours, totaling 1000 mg per day. No other drug of any kind was administered in order to ascertain the effect of the MLT without interference [...]. From Melatonin with adenosine solubilized in water and stabilized with glycine for oncological treatment - technical preparation, effectivity and clinical findings;
- About Melatonin - In vitro, review and in vivo publications;
- Publication: Melatonin anticancer effects: Review (from Di Bella's Foundation);
- Publication: Key aspects of melatonin physiology: 30 years of research (from Di Bella's Foundation);
- Somatostatin in oncology, the overlooked evidences - In vitro, review and in vivo publications;
- Publication, 2018 Jul: Over-Expression of GH/GHR in Breast Cancer and Oncosuppressor Role of Somatostatin as a Physiological Inhibitor (from Di Bella's Foundation);
- Publication, 2019 Aug: The Entrapment of Somatostatin in a Lipid Formulation: Retarded Release and Free Radical Reactivity (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of Somatostatin and Vitamin C on the Fatty Acid Profile of Breast Cancer Cell Membranes (from Di Bella's Foundation);
- Publication, 2019 Sep: Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes (from Di Bella's Foundation);
- Publication, 2020 Sep: Two neuroendocrine G protein-coupled receptor molecules, somatostatin and melatonin: Physiology of signal transduction and therapeutic perspectives (from Di Bella's Foundation);
- The Di Bella Method (A Fixed Part - Bromocriptine and/or Cabergoline);
- Complete objective response to biological therapy of plurifocal breast carcinoma;
- Pleural Mesothelioma: clinical records on 11 patients treated with Di Bella's Method;
- Malignant pleural mesothelioma, stage T3-T4. Consideration of a case study;
- Neuroblastoma: Complete objective response to biological treatment;
- Large B-cells Non-Hodgkin's Lymphoma, Stage IV-AE: a Case Report;
- Non-Hodgkin's Lymphoma, Stage III-B-E: a Case Report;
- Oesophageal squamocellular carcinoma: a complete and objective response;
- Pancreatic Adenocarcinoma: clinical records on 17 patients treated with Di Bella's Method;






